Atsuko Takashima

Publications

Displaying 1 - 11 of 11
  • Ekerdt, C., Takashima, A., & McQueen, J. M. (2023). Memory consolidation in second language neurocognition. In K. Morgan-Short, & J. G. Van Hell (Eds.), The Routledge handbook of second language acquisition and neurolinguistics. Oxfordshire: Routledge.

    Abstract

    Acquiring a second language (L2) requires newly learned information to be integrated with existing knowledge. It has been proposed that several memory systems work together to enable this process of rapidly encoding new information and then slowly incorporating it with existing knowledge, such that it is consolidated and integrated into the language network without catastrophic interference. This chapter focuses on consolidation of L2 vocabulary. First, the complementary learning systems model is outlined, along with the model’s predictions regarding lexical consolidation. Next, word learning studies in first language (L1) that investigate the factors playing a role in consolidation, and the neural mechanisms underlying this, are reviewed. Using the L1 memory consolidation literature as background, the chapter then presents what is currently known about memory consolidation in L2 word learning. Finally, considering what is already known about L1 but not about L2, future research investigating memory consolidation in L2 neurocognition is proposed.
  • Roos, N. M., Takashima, A., & Piai, V. (2023). Functional neuroanatomy of lexical access in contextually and visually guided spoken word production. Cortex, 159, 254-267. doi:10.1016/j.cortex.2022.10.014.

    Abstract

    Lexical access is commonly studied using bare picture naming, which is visually guided, but in real-life conversation, lexical access is more commonly contextually guided. In this fMRI study, we examined the underlying functional neuroanatomy of contextually and visually guided lexical access, and its consistency across sessions. We employed a context-driven picture naming task with fifteen healthy speakers reading incomplete sentences (word-by-word) and subsequently naming the picture depicting the final word. Sentences provided either a constrained or unconstrained lead–in setting for the picture to be named, thereby approximating lexical access in natural language use. The picture name could be planned either through sentence context (constrained) or picture appearance (unconstrained). This procedure was repeated in an equivalent second session two to four weeks later with the same sample to test for test-retest consistency. Picture naming times showed a strong context effect, confirming that constrained sentences speed up production of the final word depicted as an image. fMRI results showed that the areas common to contextually and visually guided lexical access were left fusiform and left inferior frontal gyrus (both consistently active across-sessions), and middle temporal gyrus. However, non-overlapping patterns were also found, notably in the left temporal and parietal cortices, suggesting a different neural circuit for contextually versus visually guided lexical access.

    Additional information

    supplementary material
  • Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37: 100647. doi:10.1016/j.dcn.2019.100649.

    Abstract

    Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.

    Additional information

    Supplementary data
  • Takashima, A., & Verhoeven, L. (2019). Radical repetition effects in beginning learners of Chinese as a foreign language reading. Journal of Neurolinguistics, 50, 71-81. doi:10.1016/j.jneuroling.2018.03.001.

    Abstract

    The aim of the present study was to examine whether repetition of radicals during training of Chinese characters leads to better word acquisition performance in beginning learners of Chinese as a foreign language. Thirty Dutch university students were trained on 36 Chinese one-character words for their pronunciations and meanings. They were also exposed to the specifics of the radicals, that is, for phonetic radicals, the associated pronunciation was explained, and for semantic radicals the associated categorical meanings were explained. Results showed that repeated exposure to phonetic and semantic radicals through character pronunciation and meaning trainings indeed induced better understanding of those radicals that were shared among different characters. Furthermore, characters in the training set that shared phonetic radicals were pronounced better than those that did not. Repetition of semantic radicals across different characters, however, hindered the learning of exact meanings. Students generally confused the meanings of other characters that shared the semantic radical. The study shows that in the initial stage of learning, overlapping information of the shared radicals are effectively learned. Acquisition of the specifics of individual characters, however, requires more training.

    Additional information

    Supplementary data
  • Van den Broek, G. S. E., Segers, E., Van Rijn, H., Takashima, A., & Verhoeven, L. (2019). Effects of elaborate feedback during practice tests: Costs and benefits of retrieval prompts. Journal of Experimental Psychology: Applied, 25(4), 588-601. doi:10.1037/xap0000212.

    Abstract

    This study explores the effect of feedback with hints on students’ recall of words. In three classroom experiments, high school students individually practiced vocabulary words through computerized retrieval practice with either standard show-answer feedback (display of answer) or hints feedback after incorrect responses. Hints feedback gave students a second chance to find the correct response using orthographic (Experiment 1), mnemonic (Experiment 2), or cross-language hints (Experiment 3). During practice, hints led to a shift of practice time from further repetitions to longer feedback processing but did not reduce (repeated) errors. There was no effect of feedback on later recall except when the hints from practice were also available on the test, indicating limited transfer of practice with hints to later recall without hints (in Experiments 1 and 2). Overall, hints feedback was not preferable over show-answer feedback. The common notion that hints are beneficial may not hold when the total practice time is limited.
  • Varma, S., Takashima, A., Fu, L., & Kessels, R. P. C. (2019). Mindwandering propensity modulates episodic memory consolidation. Aging Clinical and Experimental Research, 31(11), 1601-1607. doi:10.1007/s40520-019-01251-1.

    Abstract

    Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency.

    Additional information

    Supplementary material
  • Bakker, I., Takashima, A., Van Hall, J. G., & McQueen, J. M. (2015). Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of cognitive neuroscience, 27(7), 1286-1297. doi:10.1162/jocn_a_00801.

    Abstract

    The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4–8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16–21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations.
  • Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. Neuropsychologia, 79, 33-41. doi:10.1016/j.neuropsychologia.2015.10.020.
  • Sweegers, C. C. G., Takashima, A., Fernández, G., & Talamini, L. M. (2015). Neural mechanisms supporting the extraction of general knowledge across episodic memories. NeuroImage, 87, 138-146. doi:10.1016/j.neuroimage.2013.10.063.

    Abstract

    General knowledge acquisition entails the extraction of statistical regularities from the environment. At high levels of complexity, this may involve the extraction, and consolidation, of associative regularities across event memories. The underlying neural mechanisms would likely involve a hippocampo-neocortical dialog, as proposed previously for system-level consolidation. To test these hypotheses, we assessed possible differences in consolidation between associative memories containing cross-episodic regularities and unique associative memories. Subjects learned face–location associations, half of which responded to complex regularities regarding the combination of facial features and locations, whereas the other half did not. Importantly, regularities could only be extracted over hippocampus-encoded, associative aspects of the items. Memory was assessed both immediately after encoding and 48 h later, under fMRI acquisition. Our results suggest that processes related to system-level reorganization occur preferentially for regular associations across episodes. Moreover, the build-up of general knowledge regarding regular associations appears to involve the coordinated activity of the hippocampus and mediofrontal regions. The putative cross-talk between these two regions might support a mechanism for regularity extraction. These findings suggest that the consolidation of cross-episodic regularities may be a key mechanism underlying general knowledge acquisition.
  • Thielen, J.-W., Takashima, A., Rutters, F., Tendolkar, I., & Fernandez, G. (2015). Transient relay function of midline thalamic nuclei during long-term memory consolidation in humans. Learning & Memory, 22, 527-531. doi:10.1101/lm.038372.115.

    Abstract

    To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a parahippocampal area, which decreased with time. In turn, mPFC-parahippocampal connectivity increased progressively. These findings support a model in which thalamic midline nuclei serve as a hub linking hippocampus, mPFC, and posterior representational areas during memory retrieval at an early (2 h) stage of consolidation, extending classical systems consolidation models by attributing a transient role to midline thalamic nuclei.
  • van der Ven, F., Takashima, A., Segers, E., & Verhoeven, L. (2015). Learning Word Meanings: Overnight Integration and Study Modality Effects. PLoS One, 10. doi:10.1371/journal.pone.0124926.

    Abstract

    According to the complementary learning systems (CLS) account of word learning, novel words are rapidly acquired (learning system 1), but slowly integrated into the mental lexicon (learning system 2). This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning.

Share this page