Giacomo Bignardi

Publications

Displaying 1 - 5 of 5
  • Bignardi, G., Smit, D. J. A., Vessel, E. A., Trupp, M. D., Ticini, L. F., Fisher, S. E., & Polderman, T. J. C. (2024). Genetic effects on variability in visual aesthetic evaluations are partially shared across visual domains. Communications Biology, 7: 55. doi:10.1038/s42003-023-05710-4.

    Abstract

    The aesthetic values that individuals place on visual images are formed and shaped over a lifetime. However, whether the formation of visual aesthetic value is solely influenced by environmental exposure is still a matter of debate. Here, we considered differences in aesthetic value emerging across three visual domains: abstract images, scenes, and faces. We examined variability in two major dimensions of ordinary aesthetic experiences: taste-typicality and evaluation-bias. We build on two samples from the Australian Twin Registry where 1547 and 1231 monozygotic and dizygotic twins originally rated visual images belonging to the three domains. Genetic influences explained 26% to 41% of the variance in taste-typicality and evaluation-bias. Multivariate analyses showed that genetic effects were partially shared across visual domains. Results indicate that the heritability of major dimensions of aesthetic evaluations is comparable to that of other complex social traits, albeit lower than for other complex cognitive traits. The exception was taste-typicality for abstract images, for which we found only shared and unique environmental influences. Our study reveals that diverse sources of genetic and environmental variation influence the formation of aesthetic value across distinct visual domains and provides improved metrics to assess inter-individual differences in aesthetic value.

    Additional information

    supplementary information
  • Serio, B., Hettwer, M. D., Wiersch, L., Bignardi, G., Sacher, J., Weis, S., Eickhoff, S. B., & Valk, S. L. (2024). Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nature Communications, 15: 7714. doi:10.1038/s41467-024-51942-1.

    Abstract

    Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.

    Additional information

    41467_2024_51942_MOESM1_ESM.pdf
  • Wesseldijk, L. W., Henechowicz, T. L., Baker, D. J., Bignardi, G., Karlsson, R., Gordon, R. L., Mosing, M. A., Ullén, F., & Fisher, S. E. (2024). Notes from Beethoven’s genome. Current Biology, 34(6), R233-R234. doi:10.1016/j.cub.2024.01.025.

    Abstract

    Rapid advances over the last decade in DNA sequencing and statistical genetics enable us to investigate the genomic makeup of individuals throughout history. In a recent notable study, Begg et al.1 used Ludwig van Beethoven’s hair strands for genome sequencing and explored genetic predispositions for some of his documented medical issues. Given that it was arguably Beethoven’s skills as a musician and composer that made him an iconic figure in Western culture, we here extend the approach and apply it to musicality. We use this as an example to illustrate the broader challenges of individual-level genetic predictions.

    Additional information

    supplemental information
  • Trupp, M. D., Bignardi, G., Specker, E., Vessel, E. A., & Pelowski, M. (2023). Who benefits from online art viewing, and how: The role of pleasure, meaningfulness, and trait aesthetic responsiveness in computer-based art interventions for well-being. Computers in Human Behavior, 145: 107764. doi:10.1016/j.chb.2023.107764.

    Abstract

    When experienced in-person, engagement with art has been associated with positive outcomes in well-being and mental health. However, especially in the last decade, art viewing, cultural engagement, and even ‘trips’ to museums have begun to take place online, via computers, smartphones, tablets, or in virtual reality. Similarly, to what has been reported for in-person visits, online art engagements—easily accessible from personal devices—have also been associated to well-being impacts. However, a broader understanding of for whom and how online-delivered art might have well-being impacts is still lacking. In the present study, we used a Monet interactive art exhibition from Google Arts and Culture to deepen our understanding of the role of pleasure, meaning, and individual differences in the responsiveness to art. Beyond replicating the previous group-level effects, we confirmed our pre-registered hypothesis that trait-level inter-individual differences in aesthetic responsiveness predict some of the benefits that online art viewing has on well-being and further that such inter-individual differences at the trait level were mediated by subjective experiences of pleasure and especially meaningfulness felt during the online-art intervention. The role that participants' experiences play as a possible mechanism during art interventions is discussed in light of recent theoretical models.

    Additional information

    supplementary material
  • Vessel, E. A., Pasqualette, L., Uran, C., Koldehoff, S., Bignardi, G., & Vinck, M. (2023). Self-relevance predicts the aesthetic appeal of real and synthetic artworks generated via neural style transfer. Psychological Science, 34(9), 1007-1023. doi:10.1177/09567976231188107.

    Abstract

    What determines the aesthetic appeal of artworks? Recent work suggests that aesthetic appeal can, to some extent, be predicted from a visual artwork’s image features. Yet a large fraction of variance in aesthetic ratings remains unexplained and may relate to individual preferences. We hypothesized that an artwork’s aesthetic appeal depends strongly on self-relevance. In a first study (N = 33 adults, online replication N = 208), rated aesthetic appeal for real artworks was positively predicted by rated self-relevance. In a second experiment (N = 45 online), we created synthetic, self-relevant artworks using deep neural networks that transferred the style of existing artworks to photographs. Style transfer was applied to self-relevant photographs selected to reflect participant-specific attributes such as autobiographical memories. Self-relevant, synthetic artworks were rated as more aesthetically appealing than matched control images, at a level similar to human-made artworks. Thus, self-relevance is a key determinant of aesthetic appeal, independent of artistic skill and image features.

    Additional information

    supplementary materials

Share this page