Vitoria Piai

Publications

Displaying 1 - 11 of 11
  • Roos, N. M., Chauvet, J., & Piai, V. (2024). The Concise Language Paradigm (CLaP), a framework for studying the intersection of comprehension and production: Electrophysiological properties. Brain Structure and Function, 229, 2097-2113. doi:10.1007/s00429-024-02801-8.

    Abstract

    Studies investigating language commonly isolate one modality or process, focusing on comprehension or production. Here, we present a framework for a paradigm that combines both: the Concise Language Paradigm (CLaP), tapping into comprehension and production within one trial. The trial structure is identical across conditions, presenting a sentence followed by a picture to be named. We tested 21 healthy speakers with EEG to examine three time periods during a trial (sentence, pre-picture interval, picture onset), yielding contrasts of sentence comprehension, contextually and visually guided word retrieval, object recognition, and naming. In the CLaP, sentences are presented auditorily (constrained, unconstrained, reversed), and pictures appear as normal (constrained, unconstrained, bare) or scrambled objects. Imaging results revealed different evoked responses after sentence onset for normal and time-reversed speech. Further, we replicated the context effect of alpha-beta power decreases before picture onset for constrained relative to unconstrained sentences, and could clarify that this effect arises from power decreases following constrained sentences. Brain responses locked to picture-onset differed as a function of sentence context and picture type (normal vs. scrambled), and naming times were fastest for pictures in constrained sentences, followed by scrambled picture naming, and equally fast for bare and unconstrained picture naming. Finally, we also discuss the potential of the CLaP to be adapted to different focuses, using different versions of the linguistic content and tasks, in combination with electrophysiology or other imaging methods. These first results of the CLaP indicate that this paradigm offers a promising framework to investigate the language system.
  • Jongman, S. R., Piai, V., & Meyer, A. S. (2020). Planning for language production: The electrophysiological signature of attention to the cue to speak. Language, Cognition and Neuroscience, 35(7), 915-932. doi:10.1080/23273798.2019.1690153.

    Abstract

    In conversation, speech planning can overlap with listening to the interlocutor. It has been
    postulated that once there is enough information to formulate a response, planning is initiated
    and the response is maintained in working memory. Concurrently, the auditory input is
    monitored for the turn end such that responses can be launched promptly. In three EEG
    experiments, we aimed to identify the neural signature of phonological planning and monitoring
    by comparing delayed responding to not responding (reading aloud, repetition and lexical
    decision). These comparisons consistently resulted in a sustained positivity and beta power
    reduction over posterior regions. We argue that these effects reflect attention to the sequence
    end. Phonological planning and maintenance were not detected in the neural signature even
    though it is highly likely these were taking place. This suggests that EEG must be used cautiously
    to identify response planning when the neural signal is overridden by attention effects
  • Roos, N. M., & Piai, V. (2020). Across‐session consistency of context‐driven language processing: A magnetoencephalography study. European Journal of Neuroscience, 52, 3457-3469. doi:10.1111/ejn.14785.

    Abstract

    Changes in brain organization following damage are commonly observed, but they remain poorly understood. These changes are often studied with imaging techniques that overlook the temporal granularity at which language processes occur. By contrast, electrophysiological measures provide excellent temporal resolution. To test the suitability of magnetoencephalography (MEG) to track language-related neuroplasticity, the present study aimed at establishing the spectro-temporo-spatial across-session consistency of context-driven picture naming in healthy individuals, using MEG in two test–retest sessions. Spectro-temporo-spatial test–retest consistency in a healthy population is a prerequisite for studying neuronal changes in clinical populations over time. For this purpose, 15 healthy speakers were tested with MEG while performing a context-driven picture-naming task at two time points. Participants read a sentence missing the final word and named a picture completing the sentence. Sentences were constrained or unconstrained toward the picture, such that participants could either retrieve the picture name through sentence context (constrained sentences), or could only name it after the picture appeared (unconstrained sentences). The context effect (constrained versus unconstrained) in picture-naming times had a strong effect size and high across-session consistency. The context MEG results revealed alpha–beta power decreases (10–20 Hz) in the left temporal and inferior parietal lobule that were consistent across both sessions. As robust spectro-temporo-spatial findings in a healthy population are required for working toward longitudinal patient studies, we conclude that using context-driven language production and MEG is a suitable way to examine language-related neuroplasticity after brain damage.
  • Todorova, L., Neville, D. A., & Piai, V. (2020). Lexical-semantic and executive deficits revealed by computational modelling: A drift diffusion model perspective. Neuropsychologia, 146: 107560. doi:10.1016/j.neuropsychologia.2020.107560.

    Abstract

    Flexible language use requires coordinated functioning of two systems: conceptual representations and control. The interaction between the two systems can be observed when people are asked to match a word to a picture. Participants are slower and less accurate for related word-picture pairs (word: banana, picture: apple) relative to unrelated pairs (word: banjo, picture: apple). The mechanism underlying interference however is still unclear. We analyzed word-picture matching (WPM) performance of patients with stroke-induced lesions to the left-temporal (N = 5) or left-frontal cortex (N = 5) and matched controls (N = 12) using the drift diffusion model (DDM). In DDM, the process of making a decision is described as the stochastic accumulation of evidence towards a response. The parameters of the DDM model that characterize this process are decision threshold, drift rate, starting point and non-decision time, each of which bears cognitive interpretability. We compared the estimated model parameters from controls and patients to investigate the mechanisms of WPM interference. WPM performance in controls was explained by the amount of information needed to make a decision (decision threshold): a higher threshold was associated with related word-picture pairs relative to unrelated ones. No difference was found in the quality of the evidence (drift rate). This suggests an executive rather than semantic mechanism underlying WPM interference. Both patients with temporal and frontal lesions exhibited both increased drift rate and decision threshold for unrelated pairs relative to related ones. Left-frontal and temporal damage affected the computations required by WPM similarly, resulting in systematic deficits across lexical-semantic memory and executive functions. These results support a diverse but interactive role of lexical-semantic memory and semantic control mechanisms.

    Additional information

    supplementary material
  • Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: Neural substrates of general and specific mechanisms for monitoring and control. Frontiers in Human Neuroscience, 7: 832. doi:10.3389/fnhum.2013.00832.

    Abstract

    Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
  • Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2013). Distinct patterns of brain activity characterize lexical activation and competition in speech production [Abstract]. Journal of Cognitive Neuroscience, 25 Suppl., 106.

    Abstract

    A fundamental ability of speakers is to
    quickly retrieve words from long-term memory. According to a prominent theory, concepts activate multiple associated words, which enter into competition for selection. Previous electrophysiological studies have provided evidence for the activation of multiple alternative words, but did not identify brain responses refl ecting competition. We report a magnetoencephalography study examining the timing and neural substrates of lexical activation and competition. The degree of activation of competing words was
    manipulated by presenting pictures (e.g., dog) simultaneously with distractor
    words. The distractors were semantically related to the picture name (cat), unrelated (pin), or identical (dog). Semantic distractors are stronger competitors to the picture name, because they receive additional activation from the picture, whereas unrelated distractors do not. Picture naming times were longer with semantic than with unrelated and identical distractors. The patterns of phase-locked and non-phase-locked activity were distinct
    but temporally overlapping. Phase-locked activity in left middle temporal
    gyrus, peaking at 400 ms, was larger on unrelated than semantic and identical trials, suggesting differential effort in processing the alternative words activated by the picture-word stimuli. Non-phase-locked activity in the 4-10 Hz range between 400-650 ms in left superior frontal gyrus was larger on semantic than unrelated and identical trials, suggesting different
    degrees of effort in resolving the competition among the alternatives
    words, as refl ected in the naming times. These findings characterize distinct
    patterns of brain activity associated with lexical activation and competition
    respectively, and their temporal relation, supporting the theory that words are selected by competition.
  • Piai, V., Meyer, L., Schreuder, R., & Bastiaansen, M. C. M. (2013). Sit down and read on: Working memory and long-term memory in particle-verb processing. Brain and Language, 127(2), 296-306. doi:10.1016/j.bandl.2013.09.015.

    Abstract

    Particle verbs (e.g., look up) are lexical items for which particle and verb share a single lexical entry. Using event-related brain potentials, we examined working memory and long-term memory involvement in particle-verb processing. Dutch participants read sentences with head verbs that allow zero, two, or more than five particles to occur downstream. Additionally, sentences were presented for which the encountered particle was semantically plausible, semantically implausible, or forming a non-existing particle verb. An anterior negativity was observed at the verbs that potentially allow for a particle downstream relative to verbs that do not, possibly indexing storage of the verb until the dependency with its particle can be closed. Moreover, a graded N400 was found at the particle (smallest amplitude for plausible particles and largest for particles forming non-existing particle verbs), suggesting that lexical access to a shared lexical entry occurred at two separate time points.
  • Piai, V., & Roelofs, A. (2013). Working memory capacity and dual-task interference in picture naming. Acta Psychologica, 142, 332-342. doi:10.1016/j.actpsy.2013.01.006.
  • Roelofs, A., & Piai, V. (2013). Associative facilitation in the Stroop task: Comment on Mahon et al. Cortex, 49, 1767-1769. doi:10.1016/j.cortex.2013.03.001.

    Abstract

    First paragraph: A fundamental issue in psycholinguistics concerns how speakers retrieve intended words from long-term memory. According to a selection by competition account (e.g., Levelt
    et al., 1999), conceptually driven word retrieval involves the activation of a set of candidate words and a competitive selection
    of the intended word from this set.
  • Roelofs, A., Piai, V., & Schriefers, H. (2013). Context effects and selective attention in picture naming and word reading: Competition versus response exclusion. Language and Cognitive Processes, 28, 655-671. doi:10.1080/01690965.2011.615663.

    Abstract

    For several decades, context effects in picture naming and word reading have been extensively investigated. However, researchers have found no agreement on the explanation of the effects. Whereas it has long been assumed that several types of effect reflect competition in word selection, recently it has been argued that these effects reflect the exclusion of articulatory responses from an output buffer. Here, we first critically evaluate the findings on context effects in picture naming that have been taken as evidence against the competition account, and we argue that the findings are, in fact, compatible with the competition account. Moreover, some of the findings appear to challenge rather than support the response exclusion account. Next, we compare the response exclusion and competition accounts with respect to their ability to explain data on word reading. It appears that response exclusion does not account well for context effects on word reading times, whereas computer simulations reveal that a competition model like WEAVER++ accounts for the findings.

    Files private

    Request files
  • Roelofs, A., Piai, V., & Schriefers, H. (2013). Selection by competition in word production: Rejoinder to Janssen (2012). Language and Cognitive Processes, 28, 679-683. doi:10.1080/01690965.2013.770890.

    Abstract

    Roelofs, Piai, and Schriefers argue that several findings on the effect of distractor words and pictures in producing words support a selection-by-competition account and challenge a non-competitive response-exclusion account. Janssen argues that the findings do not challenge response exclusion, and he conjectures that both competitive and non-competitive mechanisms underlie word selection. Here, we maintain that the findings do challenge the response-exclusion account and support the assumption of a single competitive mechanism underlying word selection.

    Files private

    Request files

Share this page