Learning simple and complex artificial grammars in the presence of a semantic reference field: Effects on performance and awareness
This study investigated whether the negative effect of complexity on artificial grammar learning could be compensated by adding semantics. Participants were exposed to exemplars from a simple or a complex finite state grammar presented with or without a semantic reference field. As expected, performance on a grammaticality judgment test was higher for the simple grammar than for the complex grammar. For the simple grammar, the results also showed that participants presented with a reference field and instructed to decode the meaning of each exemplar (decoding condition) did better than participants who memorized the exemplars without semantic referents (memorize condition). Contrary to expectations, however, there was no significant difference between the decoding condition and the memorize condition for the complex grammar. These findings indicated that the negative effect of complexity remained, despite the addition of semantics. To clarify how the presence of a reference field influenced the learning process, its effects on the acquisition of two types of knowledge (first- and second-order dependencies) and on participants’ awareness of their knowledge were examined. The results tentatively suggested that the reference field enhanced the learning of second-order dependencies. In addition, participants in the decoding condition realized when they had knowledge relevant to making a grammaticality judgment, whereas participants in the memorize condition demonstrated some knowledge of which they were unaware. These results are in line with the view that the reference field enhanced structure learning by making certain dependencies more salient. Moreover, our findings stress the influence of complexity on artificial grammar learning
Additional information
data sheet 1.pdf
Share this page