Processing and adaptation to ambiguous sounds during the course of perceptual learning
Listeners use their lexical knowledge to interpret ambiguous sounds, and retune their phonetic categories to include this ambiguous sound. Although there is ample evidence for lexically-guided retuning, the adaptation process is not fully understood. Using a lexical decision task with an embedded auditory semantic priming task, the present study investigates whether words containing an ambiguous sound are processed in the same way as “natural” words and whether adaptation to the ambiguous sound tends to equalize the processing of “ambiguous” and natural words. Analyses of the yes/no responses and reaction times to natural and “ambiguous” words showed that words containing an ambiguous sound were accepted as words less often and were processed slower than the same words without ambiguity. The difference in acceptance disappeared after exposure to approximately 15 ambiguous items. Interestingly, lower acceptance rates and slower processing did not have an effect on the processing of semantic information of the following word. However, lower acceptance rates of ambiguous primes predict slower reaction times of these primes, suggesting an important role of stimulus-specific characteristics in triggering lexically-guided perceptual learning.
Share this page