Gesture–speech physics: The biomechanical basis for the emergence of gesture–speech synchrony

Pouw, W., Harrison, S. J., & Dixon, J. A. (2020). Gesture–speech physics: The biomechanical basis for the emergence of gesture–speech synchrony. Journal of Experimental Psychology: General, 149(2), 391-404. doi:10.1037/xge0000646.
The phenomenon of gesture–speech synchrony involves tight coupling of prosodic contrasts in gesture
movement (e.g., peak velocity) and speech (e.g., peaks in fundamental frequency; F0). Gesture–speech
synchrony has been understood as completely governed by sophisticated neural-cognitive mechanisms.
However, gesture–speech synchrony may have its original basis in the resonating forces that travel through the
body. In the current preregistered study, movements with high physical impact affected phonation in line with
gesture–speech synchrony as observed in natural contexts. Rhythmic beating of the arms entrained phonation
acoustics (F0 and the amplitude envelope). Such effects were absent for a condition with low-impetus
movements (wrist movements) and a condition without movement. Further, movement–phonation synchrony
was more pronounced when participants were standing as opposed to sitting, indicating a mediating role for
postural stability. We conclude that gesture–speech synchrony has a biomechanical basis, which will have
implications for our cognitive, ontogenetic, and phylogenetic understanding of multimodal language.
Publication type
Journal article
Publication date
2020

Share this page