Simon E. Fisher

Publications

Displaying 1 - 5 of 5
  • Fisher, S. E., & Smith, S. (2001). Progress towards the identification of genes influencing developmental dyslexia. In A. Fawcett (Ed.), Dyslexia: Theory and good practice (pp. 39-64). London: Whurr.
  • Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder[Letters to Nature]. Nature, 413, 519-523. doi:10.1038/35097076.

    Abstract

    Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity. Although studies of twins consistently indicate that a significant genetic component is involved, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language
  • Siddiqui, M. R., Meisner, S., Tosh, K., Balakrishnan, K., Ghei, S., Fisher, S. E., Golding, M., Narayan, N. P. S., Sitaraman, T., Sengupta, U., Pitchappan, R., & Hill, A. V. (2001). A major susceptibility locus for leprosy in India maps to chromosome 10p13 [Letter]. Nature Genetics, 27, 439-441. doi:10.1038/86958.

    Abstract

    Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is prevalent in India, where about half of the world's estimated 800,000 cases occur. A role for the genetics of the host in variable susceptibility to leprosy has been indicated by familial clustering, twin studies, complex segregation analyses and human leukocyte antigen (HLA) association studies. We report here a genetic linkage scan of the genomes of 224 families from South India, containing 245 independent affected sibpairs with leprosy, mainly of the paucibacillary type. In a two-stage genome screen using 396 microsatellite markers, we found significant linkage (maximum lod score (MLS) = 4.09, P < 2x10-5) on chromosome 10p13 for a series of neighboring microsatellite markers, providing evidence for a major locus for this prevalent infectious disease. Thus, despite the polygenic nature of infectious disease susceptibility, some major, non-HLA-linked loci exist that may be mapped through obtainable numbers of affected sibling pairs.
  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168 -170. doi:10.1038/ng0298-168.

    Abstract

    Between 2 and 5% of children who are otherwise unimpaired have significant difficulties in acquiring expressive and/or receptive language, despite adequate intelligence and opportunity. While twin studies indicate a significant role for genetic factors in developmental disorders of speech and language, the majority of families segregating such disorders show complex patterns of inheritance, and are thus not amenable for conventional linkage analysis. A rare exception is the KE family, a large three-generation pedigree in which approximately half of the members are affected with a severe speech and language disorder which appears to be transmitted as an autosomal dominant monogenic trait. This family has been widely publicised as suffering primarily from a defect in the use of grammatical suffixation rules, thus supposedly supporting the existence of genes specific to grammar. The phenotype, however, is broader in nature, with virtually every aspect of grammar and of language affected. In addition, affected members have a severe orofacial dyspraxia, and their speech is largely incomprehensible to the naive listener. We initiated a genome-wide search for linkage in the KE family and have identified a region on chromosome 7 which co-segregates with the speech and language disorder (maximum lod score = 6.62 at theta = 0.0), confirming autosomal dominant inheritance with full penetrance. Further analysis of microsatellites from within the region enabled us to fine map the locus responsible (designated SPCH1) to a 5.6-cM interval in 7q31, thus providing an important step towards its identification. Isolation of SPCH1 may offer the first insight into the molecular genetics of the developmental process that culminates in speech and language.
  • Fisher, S. E., Black, G. C. M., Lloyd, S. E., Wrong, O. M., Thakker, R. V., & Craig, I. W. (1994). Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Human Molecular Genetics, 3, 2053-2059.

    Abstract

    Dent's disease, an X-linked renal tubular disorder, is a form of Fanconi syndrome which is characterized by proteinuria, hypercalciuria, nephrocalcinosis, kidney stones and renal failure. Previous studies localised the gene responsible to Xp11.22, within a microdeletion involving the hypervariable locus DXS255. Further analysis using new probes which flank this locus indicate that the deletion is less than 515 kb. A 185 kb YAC containing DXS255 was used to screen a cDNA library from adult kidney in order to isolate coding sequences falling within the deleted region which may be implicated in the disease aetiology. We identified two clones which are evolutionarily conserved, and detect a 9.5 kb transcript which is expressed predominantly in the kidney. Sequence analysis of 780 bp of ORF from the clones suggests that the identified gene, termed hCIC-K2, encodes a new member of the CIC family of voltage-gated chloride channels. Genomic fragments detected by the cDNA clones are completely absent in patients who have an associated microdeletion. On the basis of the expression pattern, proposed function and deletion mapping, hCIC-K2 is a strong candidate for Dent's disease.

Share this page