Displaying 1 - 12 of 12
-
Fisher, S. E., Lai, C. S., & Monaco, a. A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57-80. doi:10.1146/annurev.neuro.26.041002.131144.
Abstract
A significant number of individuals have unexplained difficulties with acquiring normal speech and language, despite adequate intelligence and environmental stimulation. Although developmental disorders of speech and language are heritable, the genetic basis is likely to involve several, possibly many, different risk factors. Investigations of a unique three-generation family showing monogenic inheritance of speech and language deficits led to the isolation of the first such gene on chromosome 7, which encodes a transcription factor known as FOXP2. Disruption of this gene causes a rare severe speech and language disorder but does not appear to be involved in more common forms of language impairment. Recent genome-wide scans have identified at least four chromosomal regions that may harbor genes influencing the latter, on chromosomes 2, 13, 16, and 19. The molecular genetic approach has potential for dissecting neurological pathways underlying speech and language disorders, but such investigations are only just beginning. -
Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (
Eds. ), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer. -
Francks, C., DeLisi, L. E., Fisher, S. E., Laval, S. H., Rue, J. E., Stein, J. F., & Monaco, A. P. (2003). Confirmatory evidence for linkage of relative hand skill to 2p12-q11 [Letter to the editor]. American Journal of Human Genetics, 72(2), 499-502. doi:10.1086/367548.
-
Francks, C., Fisher, S. E., Marlow, A. J., MacPhie, I. L., Taylor, K. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Familial and genetic effects on motor coordination, laterality, and reading-related cognition. American Journal of Psychiatry, 160(11), 1970-1977. doi:10.1176/appi.ajp.160.11.1970.
Abstract
OBJECTIVE: Recent research has provided evidence for a genetically mediated association between language or reading-related cognitive deficits and impaired motor coordination. Other studies have identified relationships between lateralization of hand skill and cognitive abilities. With a large sample, the authors aimed to investigate genetic relationships between measures of reading-related cognition, hand motor skill, and hand skill lateralization.
METHOD: The authors applied univariate and bivariate correlation and familiality analyses to a range of measures. They also performed genomewide linkage analysis of hand motor skill in a subgroup of 195 sibling pairs.
RESULTS: Hand motor skill was significantly familial (maximum heritability=41%), as were reading-related measures. Hand motor skill was weakly but significantly correlated with reading-related measures, such as nonword reading and irregular word reading. However, these correlations were not significantly familial in nature, and the authors did not observe linkage of hand motor skill to any chromosomal regions implicated in susceptibility to dyslexia. Lateralization of hand skill was not correlated with reading or cognitive ability.
CONCLUSIONS: The authors confirmed a relationship between lower motor ability and poor reading performance. However, the genetic effects on motor skill and reading ability appeared to be largely or wholly distinct, suggesting that the correlation between these traits may have arisen from environmental influences. Finally, the authors found no evidence that reading disability and/or low general cognitive ability were associated with ambidexterity.Additional information
https://doi.org/10.1176/appi.ajp.161.1.185 -
Francks, C., DeLisi, L. E., Shaw, S. H., Fisher, S. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Human Molecular Genetics, 12(24), 3225-3230. doi:10.1093/hmg/ddg362.
Abstract
Schizophrenia and non-right-handedness are moderately associated, and both traits are often accompanied by abnormalities of asymmetrical brain morphology or function. We have found linkage previously of chromosome 2p12-q11 to a quantitative measure of handedness, and we have also found linkage of schizophrenia/schizoaffective disorder to this same chromosomal region in a separate study. Now, we have found that in one of our samples (191 reading-disabled sibling pairs), the relative hand skill of siblings was correlated more strongly with paternal than maternal relative hand skill. This led us to re-analyse 2p12-q11 under parent-of-origin linkage models. We found linkage of relative hand skill in the RD siblings to 2p12-q11 with P=0.0000037 for paternal identity-by-descent sharing, whereas the maternally inherited locus was not linked to the trait (P>0.2). Similarly, in affected-sib-pair analysis of our schizophrenia dataset (241 sibling pairs), we found linkage to schizophrenia for paternal sharing with LOD=4.72, P=0.0000016, within 3 cM of the peak linkage to relative hand skill. Maternal linkage across the region was weak or non-significant. These similar paternal-specific linkages suggest that the causative genetic effects on 2p12-q11 are related. The linkages may be due to a single maternally imprinted influence on lateralized brain development that contains common functional polymorphisms. -
Lai, C. S. L., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455-2462. doi:10.1093/brain/awg247.
Abstract
Disruption of FOXP2, a gene encoding a forkhead-domain transcription factor, causes a severe developmental disorder of verbal communication, involving profound articulation deficits, accompanied by linguistic and grammatical impairments. Investigation of the neural basis of this disorder has been limited previously to neuroimaging of affected children and adults. The discovery of the gene responsible, FOXP2, offers a unique opportunity to explore the relevant neural mechanisms from a molecular perspective. In the present study, we have determined the detailed spatial and temporal expression pattern of FOXP2 mRNA in the developing brain of mouse and human. We find expression in several structures including the cortical plate, basal ganglia, thalamus, inferior olives and cerebellum. These data support a role for FOXP2 in the development of corticostriatal and olivocerebellar circuits involved in motor control. We find intriguing concordance between regions of early expression and later sites of pathology suggested by neuroimaging. Moreover, the homologous pattern of FOXP2/Foxp2 expression in human and mouse argues for a role for this gene in development of motor-related circuits throughout mammalian species. Overall, this study provides support for the hypothesis that impairments in sequencing of movement and procedural learning might be central to the FOXP2-related speech and language disorder. -
Marcus, G. F., & Fisher, S. E. (2003). FOXP2 in focus: What can genes tell us about speech and language? Trends in Cognitive Sciences, 7, 257-262. doi:10.1016/S1364-6613(03)00104-9.
Abstract
The human capacity for acquiring speech and language must derive, at least in part, from the genome. In 2001, a study described the first case of a gene, FOXP2, which is thought to be implicated in our ability to acquire spoken language. In the present article, we discuss how this gene was discovered, what it might do, how it relates to other genes, and what it could tell us about the nature of speech and language development. We explain how FOXP2 could, without being specific to the brain or to our own species, still provide an invaluable entry-point into understanding the genetic cascades and neural pathways that contribute to our capacity for speech and language. -
Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, I. L., Cherny, S. S., Richardson, A. J., Talcott, J. B., Stein, J. F., Monaco, A. P., & Cardon, L. R. (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics, 72(3), 561-570. doi:10.1086/368201.
Abstract
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. -
Ogdie, M. N., MacPhie, I. L., Minassian, S. L., Yang, M., Fisher, S. E., Francks, C., Cantor, R. M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2003). A genomewide scan for Attention-Deficit/Hyperactivity Disorder in an extended sample: Suggestive linkage on 17p11. American Journal of Human Genetics, 72(5), 1268-1279. doi:10.1086/375139.
Abstract
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is a common, highly heritable neurobehavioral disorder of childhood onset, characterized by hyperactivity, impulsivity, and/or inattention. As part of an ongoing study of the genetic etiology of ADHD, we have performed a genomewide linkage scan in 204 nuclear families comprising 853 individuals and 270 affected sibling pairs (ASPs). Previously, we reported genomewide linkage analysis of a “first wave” of these families composed of 126 ASPs. A follow-up investigation of one region on 16p yielded significant linkage in an extended sample. The current study extends the original sample of 126 ASPs to 270 ASPs and provides linkage analyses of the entire sample, using polymorphic microsatellite markers that define an ∼10-cM map across the genome. Maximum LOD score (MLS) analysis identified suggestive linkage for 17p11 (MLS=2.98) and four nominal regions with MLS values >1.0, including 5p13, 6q14, 11q25, and 20q13. These data, taken together with the fine mapping on 16p13, suggest two regions as highly likely to harbor risk genes for ADHD: 16p13 and 17p11. Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism. -
Fisher, S. E., Stein, J. F., & Monaco, A. P. (1999). A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia). European Child & Adolescent Psychiatry, 8(suppl. 3), S47-S51. doi:10.1007/PL00010694.
Abstract
Family and twin studies of developmental dyslexia have consistently shown that there is a significant heritable component for this disorder. However, any genetic basis for the trait is likely to be complex, involving reduced penetrance, phenocopy, heterogeneity and oligogenic inheritance. This complexity results in reduced power for traditional parametric linkage analysis, where specification of the correct genetic model is important. One strategy is to focus on large multigenerational pedigrees with severe phenotypes and/or apparent simple Mendelian inheritance, as has been successfully demonstrated for speech and language impairment. This approach is limited by the scarcity of such families. An alternative which has recently become feasible due to the development of high-throughput genotyping techniques is the analysis of large numbers of sib-pairs using allele-sharing methodology. This paper outlines our strategy for conducting a systematic genome-wide search for genes involved in dyslexia in a large number of affected sib-pair familites from the UK. We use a series of psychometric tests to obtain different quantitative measures of reading deficit, which should correlate with different components of the dyslexia phenotype, such as phonological awareness and orthographic coding ability. This enable us to use QTL (quantitative trait locus) mapping as a powerful tool for localising genes which may contribute to reading and spelling disability. -
Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., Weeks, D. E., Stein, J. F., & Monaco, A. P. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics, 64(1), 146-156. doi:10.1086/302190.
Abstract
Recent application of nonparametric-linkage analysis to reading disability has implicated a putative quantitative-trait locus (QTL) on the short arm of chromosome 6. In the present study, we use QTL methods to evaluate linkage to the 6p25-21.3 region in a sample of 181 sib pairs from 82 nuclear families that were selected on the basis of a dyslexic proband. We have assessed linkage directly for several quantitative measures that should correlate with different components of the phenotype, rather than using a single composite measure or employing categorical definitions of subtypes. Our measures include the traditional IQ/reading discrepancy score, as well as tests of word recognition, irregular-word reading, and nonword reading. Pointwise analysis by means of sib-pair trait differences suggests the presence, in 6p21.3, of a QTL influencing multiple components of dyslexia, in particular the reading of irregular words (P=.0016) and nonwords (P=.0024). A complementary statistical approach involving estimation of variance components supports these findings (irregular words, P=.007; nonwords, P=.0004). Multipoint analyses place the QTL within the D6S422-D6S291 interval, with a peak around markers D6S276 and D6S105 consistently identified by approaches based on trait differences (irregular words, P=.00035; nonwords, P=.0035) and variance components (irregular words, P=.007; nonwords, P=.0038). Our findings indicate that the QTL affects both phonological and orthographic skills and is not specific to phoneme awareness, as has been previously suggested. Further studies will be necessary to obtain a more precise localization of this QTL, which may lead to the isolation of one of the genes involved in developmental dyslexia. -
Tanaka, K., Fisher, S. E., & Craig, I. W. (1999). Characterization of novel promoter and enhancer elements of the mouse homologue of the Dent disease gene, CLCN5, implicated in X-linked hereditary nephrolithiasis. Genomics, 58, 281-292. doi:10.1006/geno.1999.5839.
Abstract
The murine homologue of the human chloride channel gene, CLCN5, defects in which are responsible for Dent disease, has been cloned and characterized. We isolated the entire coding region of mouse Clcn5 cDNA and approximately 45 kb of genomic sequence embracing the gene. To study its transcriptional control, the 5' upstream sequences of the mouse Clcn5 gene were cloned into a luciferase reporter vector. Deletion analysis of 1.5 kb of the 5' flanking sequence defined an active promoter region within 128 bp of the putative transcription start site, which is associated with a TATA motif but lacks a CAAT consensus. Within this sequence, there is a motif with homology to a purine-rich sequence responsible for the kidney-specific promoter activity of the rat CLC-K1 gene, another member of the chloride-channel gene family expressed in kidney. An enhancer element that confers a 10- to 20-fold increase in the promoter activity of the mouse Clcn5 gene was found within the first intron. The organization of the human CLCN5 and mouse Clcn5 gene structures is highly conserved, and the sequence of the murine protein is 98% similar to that of human, with its highest expression seen in the kidney. This study thus provides the first identification of the transcriptional control region of, and the basis for an understanding of the regulatory mechanism that controls, this kidney-specific, chloride-channel gene.
Share this page