Displaying 1 - 16 of 16
-
Abbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A. and 13 moreAbbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A., Fisher, S. E., Barr, C. L., Michaelson, J. J., Boomsma, D. I., Snowling, M. J., Hulme, C., Whitehouse, A. J. O., Pennell, C. E., Newbury, D. F., Stein, J., Talcott, J. B., Bishop, D. V. M., & Paracchini, S. (2023). Language and reading impairments are associated with increased prevalence of non‐right‐handedness. Child Development, 94(4), 970-984. doi:10.1111/cdev.13914.
Abstract
Handedness has been studied for association with language-related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non-right-handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex-matched controls identified from 10 distinct cohorts (age range 6–19 years old; European ethnicity) using a priori set criteria. A meta-analysis (Ncases = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06–1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions.Additional information
supplementary information -
Heim, F., Fisher, S. E., Scharff, C., Ten Cate, C., & Riebel, K. (2023). Effects of cortical FoxP1 knockdowns on learned song preference in female zebra finches. eNeuro, 10(3): ENEURO.0328-22.2023. doi:10.1523/ENEURO.0328-22.2023.
Abstract
The search for molecular underpinnings of human vocal communication has focused on genes encoding forkhead-box transcription factors, as rare disruptions of FOXP1, FOXP2, and FOXP4 have been linked to disorders involving speech and language deficits. In male songbirds, an animal model for vocal learning, experimentally altered expression levels of these transcription factors impair song production learning. The relative contributions of auditory processing, motor function or auditory-motor integration to the deficits observed after different FoxP manipulations in songbirds are unknown. To examine the potential effects on auditory learning and development, we focused on female zebra finches (Taeniopygia guttata) that do not sing but develop song memories, which can be assayed in operant preference tests. We tested whether the relatively high levels of FoxP1 expression in forebrain areas implicated in female song preference learning are crucial for the development and/or maintenance of this behavior. Juvenile and adult female zebra finches received FoxP1 knockdowns targeted to HVC (proper name) or to the caudomedial mesopallium (CMM). Irrespective of target site and whether the knockdown took place before (juveniles) or after (adults) the sensitive phase for song memorization, all groups preferred their tutor’s song. However, adult females with FoxP1 knockdowns targeted at HVC showed weaker motivation to hear song and weaker song preferences than sham-treated controls, while no such differences were observed after knockdowns in CMM or in juveniles. In summary, FoxP1 knockdowns in the cortical song nucleus HVC were not associated with impaired tutor song memory but reduced motivation to actively request tutor songs. -
Kaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E. and 10 moreKaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E., Ziegenfusz, S., Bennett, M. F., Robertson, E., Wang, L., Boys, A., Fisher, S. E., Amor, D. J., Scheffer, I. E., Bahlo, M., & Morgan, A. T. (2023). Genetic aetiologies for childhood speech disorder: Novel pathways co-expressed during brain development. Molecular Psychiatry, 28, 1647-1663. doi:10.1038/s41380-022-01764-8.
Abstract
Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.Additional information
supplemental methods and results supplemental table 1 supplementary tables 2 to 9 correction -
Lemaitre, H., Le Guen, Y., Tilot, A. K., Stein, J. L., Philippe, C., Mangin, J.-F., Fisher, S. E., & Frouin, V. (2023). Genetic variations within human gained enhancer elements affect human brain sulcal morphology. NeuroImage, 265: 119773. doi:10.1016/j.neuroimage.2022.119773.
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.Additional information
tables -
Morison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T. and 3 moreMorison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T., Fisher, S. E., Zweier, C., & Morgan, A. T. (2023). In-depth characterisation of a cohort of individuals with missense and loss-of-function variants disrupting FOXP2. Journal of Medical Genetics, 60(6), 597-607. doi:10.1136/jmg-2022-108734.
Abstract
Background
Heterozygous disruptions of FOXP2 were the first identified molecular cause for severe speech disorder; childhood apraxia of speech (CAS), yet few cases have been reported, limiting knowledge of the condition.
Methods
Here we phenotyped 29 individuals from 18 families with pathogenic FOXP2-only variants (13 loss-of-function, 5 missense variants; 14 males; aged 2 years to 62 years). Health and development (cognitive, motor, social domains) was examined, including speech and language outcomes with the first cross-linguistic analysis of English and German.
Results
Speech disorders were prevalent (24/26, 92%) and CAS was most common (23/26, 89%), with similar speech presentations across English and German. Speech was still impaired in adulthood and some speech sounds (e.g. ‘th’, ‘r’, ‘ch’, ‘j’) were never acquired. Language impairments (22/26, 85%) ranged from mild to severe. Comorbidities included feeding difficulties in infancy (10/27, 37%), fine (14/27, 52%) and gross (14/27, 52%) motor impairment, anxiety (6/28, 21%), depression (7/28, 25%), and sleep disturbance (11/15, 44%). Physical features were common (23/28, 82%) but with no consistent pattern. Cognition ranged from average to mildly impaired, and was incongruent with language ability; for example, seven participants with severe language disorder had average non-verbal cognition.
Conclusions
Although we identify increased prevalence of conditions like anxiety, depression and sleep disturbance, we confirm that the consequences of FOXP2 dysfunction remain relatively specific to speech disorder, as compared to other recently identified monogenic conditions associated with CAS. Thus, our findings reinforce that FOXP2 provides a valuable entrypoint for examining the neurobiological bases of speech disorder. -
Oliveira‑Stahl, G., Farboud, S., Sterling, M. L., Heckman, J. J., Van Raalte, B., Lenferink, D., Van der Stam, A., Smeets, C. J. L. M., Fisher, S. E., & Englitz, B. (2023). High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences. Scientific Reports, 13: 5219. doi:10.1038/s41598-023-31554-3.
Abstract
Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2–3-fold improvement in accuracy (13.1–14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.Additional information
supplementary movies and figures -
Schijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A. and 129 moreSchijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A., Jönsson, E. G., Kochunov, P., Bruggemann, J. M., Catts, S. V., Michie, P. T., Mowry, B. J., Quidé, Y., Rasser, P. E., Schall, U., Scott, R. J., Carr, V. J., Green, M. J., Henskens, F. A., Loughland, C. M., Pantelis, C., Weickert, C. S., Weickert, T. W., De Haan, L., Brosch, K., Pfarr, J.-K., Ringwald, K. G., Stein, F., Jansen, A., Kircher, T. T., Nenadić, I., Krämer, B., Gruber, O., Satterthwaite, T. D., Bustillo, J., Mathalon, D. H., Preda, A., Calhoun, V. D., Ford, J. M., Potkin, S. G., Chen, J., Tan, Y., Wang, Z., Xiang, H., Fan, F., Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M. A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Van Amelsvoort, T., Dickie, E. W., Voineskos, A. N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R. M., Kim, W.-S., Chung, Y.-C., Andreou, C., Schmidt, A., Borgwardt, S., McIntosh, A. M., Whalley, H. C., Lawrie, S. M., Du Plessis, S., Luckhoff, H. K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J. T., Rootes-Murdy, K., Stephen, J. M., Mayer, A. R., Antonucci, L. A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C. M., Janssen, J., Lois, N. G., Arango, C., Tomyshev, A. S., Lebedeva, I., Cervenka, S., Sellgren, C. M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y. B., Oh, S., Kwon, J. S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F. M., Stein, D. J., Temmingh, H. S., Diaz-Zuluaga, A. M., Pineda-Zapata, J. A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S. E., Franke, B., Glahn, D. C., Gur, R. C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S. E., Thompson, P. M., Turner, J. A., Van Erp, T. G., & Francks, C. (2023). Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 120(14): e2213880120. doi:10.1073/pnas.2213880120.
Abstract
Left–right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case–control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case–control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case–control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case–control status. Subtle case–control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia. -
Sha, Z., Schijven, D., Fisher, S. E., & Francks, C. (2023). Genetic architecture of the white matter connectome of the human brain. Science Advances, 9(7): eadd2870. doi:10.1126/sciadv.add2870.
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.Additional information
figs. S1 to S14, legends for tables S1 to S31 tables S1 to S31 link to Preprint on bioRxiv -
Snijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E. and 29 moreSnijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E., Keena, B., Hakonarson, H., Roos, A., Kohlschmidt, N., Cereda, A., Iascone, M., Rebessi, E., Kernohan, K. D., Campeau, P. M., Millan, F., Taylor, J. A., Lochmüller, H., Higgs, M. R., Goula, A., Bernhard, B., Velasco, D. J., Schmanski, A. A., Stark, Z., Gallacher, L., Pais, L., Marcogliese, P. C., Yamamoto, S., Raun, N., Jakub, T. E., Kramer, J. M., Den Hoed, J., Fisher, S. E., Brunner, H. G., & Kleefstra, T. (2023). A clustering of heterozygous missense variants in the crucial chromatin modifier WDR5 defines a new neurodevelopmental disorder. Human Genetics and Genomics Advances, 4(1): 100157. doi:10.1016/j.xhgg.2022.100157.
Abstract
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals, and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (N=11), intellectual disability (N=9), epilepsy (N=7) and autism spectrum disorder (N=4). Additional phenotypic features included abnormal growth parameters (N=7), heart anomalies (N=2) and hearing loss (N=2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders. -
Sollis, E., Den Hoed, J., Quevedo, M., Estruch, S. B., Vino, A., Dekkers, D. H. W., Demmers, J. A. A., Poot, R., Derizioti, P., & Fisher, S. E. (2023). Characterization of the TBR1 interactome: Variants associated with neurodevelopmental disorders disrupt novel protein interactions. Human Molecular Genetics, 32(9): ddac311, pp. 1497-1510. doi:10.1093/hmg/ddac311.
Abstract
TBR1 is a neuron-specific transcription factor involved in brain development and implicated in a neurodevelopmental disorder (NDD) combining features of autism spectrum disorder (ASD), intellectual disability (ID) and speech delay. TBR1 has been previously shown to interact with a small number of transcription factors and co-factors also involved in NDDs (including CASK, FOXP1/2/4 and BCL11A), suggesting that the wider TBR1 interactome may have a significant bearing on normal and abnormal brain development. Here we have identified approximately 250 putative TBR1-interaction partners by affinity purification coupled to mass spectrometry. As well as known TBR1-interactors such as CASK, the identified partners include transcription factors and chromatin modifiers, along with ASD- and ID-related proteins. Five interaction candidates were independently validated using bioluminescence resonance energy transfer assays. We went on to test the interaction of these candidates with TBR1 protein variants implicated in cases of NDD. The assays uncovered disturbed interactions for NDD-associated variants and identified two distinct protein-binding domains of TBR1 that have essential roles in protein–protein interaction. -
Fisher, S. E. (2007). Molecular windows into speech and language disorders. Folia Phoniatrica et Logopaedica, 59, 130-140. doi:10.1159/000101771.
Abstract
Why do some children fail to acquire speech and language skills despite adequate environmental input and overtly normal neurological and anatomical development? It has been suspected for several decades, based on indirect evidence, that the human genome might hold some answers to this enigma. These suspicions have recently received dramatic confirmation with the discovery of specific genetic changes which appear sufficient to derail speech and language development. Indeed, researchers are already using information from genetic studies to aid early diagnosis and to shed light on the neural pathways that are perturbed in these inherited forms of speech and language disorder. Thus, we have entered an exciting era for dissecting the neural bases of human communication, one which takes genes and molecules as a starting point. In the current article I explain how this recent paradigm shift has occurred and describe the new vistas that have opened up. I demonstrate ways of bridging the gaps between molecules, neurons and the brain, which will provide a new understanding of the aetiology of speech and language impairments. -
Francks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B. and 22 moreFrancks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B., Nanba, E., Richardson, A. J., Riley, B. P., Martin, N. G., Strittmatter, S. M., Möller, H.-J., Rujescu, D., St Clair, D., Muglia, P., Roos, J. L., Fisher, S. E., Wade-Martins, R., Rouleau, G. A., Stein, J. F., Karayiorgou, M., Geschwind, D. H., Ragoussis, J., Kendler, K. S., Airaksinen, M. S., Oshimura, M., DeLisi, L. E., & Monaco, A. P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129-1139. doi:10.1038/sj.mp.4002053.
Abstract
Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.Additional information
http://www.nature.com/mp/journal/v12/n12/suppinfo/4002053s1.html?url=/mp/journa… -
French, C. A., Groszer, M., Preece, C., Coupe, A.-M., Rajewsky, K., & Fisher, S. E. (2007). Generation of mice with a conditional Foxp2 null allele. Genesis, 45(7), 440-446. doi:10.1002/dvg.20305.
Abstract
Disruptions of the human FOXP2 gene cause problems with articulation of complex speech sounds, accompanied by impairment in many aspects of language ability. The FOXP2/Foxp2 transcription factor is highly similar in humans and mice, and shows a complex conserved expression pattern, with high levels in neuronal subpopulations of the cortex, striatum, thalamus, and cerebellum. In the present study we generated mice in which loxP sites flank exons 12-14 of Foxp2; these exons encode the DNA-binding motif, a key functional domain. We demonstrate that early global Cre-mediated recombination yields a null allele, as shown by loss of the loxP-flanked exons at the RNA level and an absence of Foxp2 protein. Homozygous null mice display severe motor impairment, cerebellar abnormalities and early postnatal lethality, consistent with other Foxp2 mutants. When crossed to transgenic lines expressing Cre protein in a spatially and/or temporally controlled manner, these conditional mice will provide new insights into the contributions of Foxp2 to distinct neural circuits, and allow dissection of roles during development and in the mature brain. -
Monaco, A., Fisher, S. E., & The SLI Consortium (SLIC) (2007). Multivariate linkage analysis of specific language impairment (SLI). Annals of Human Genetics, 71(5), 660-673. doi:10.1111/j.1469-1809.2007.00361.x.
Abstract
Specific language impairment (SLI) is defined as an inability to develop appropriate language skills without explanatory medical conditions, low intelligence or lack of opportunity. Previously, a genome scan of 98 families affected by SLI was completed by the SLI Consortium, resulting in the identification of two quantitative trait loci (QTL) on chromosomes 16q (SLI1) and 19q (SLI2). This was followed by a replication of both regions in an additional 86 families. Both these studies applied linkage methods to one phenotypic trait at a time. However, investigations have suggested that simultaneous analysis of several traits may offer more power. The current study therefore applied a multivariate variance-components approach to the SLI Consortium dataset using additional phenotypic data. A multivariate genome scan was completed and supported the importance of the SLI1 and SLI2 loci, whilst highlighting a possible novel QTL on chromosome 10. Further investigation implied that the effect of SLI1 on non-word repetition was equally as strong on reading and spelling phenotypes. In contrast, SLI2 appeared to have influences on a selection of expressive and receptive language phenotypes in addition to non-word repetition, but did not show linkage to literacy phenotypes.Additional information
Members_SLIC.doc -
Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., Vernes, S. C., Fisher, S. E., Ren, B., & Geschwind, D. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American Journal of Human Genetics, 81(6), 1144-1157. doi:10.1086/522237.
Abstract
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. -
Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., Geschwind, D., & Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. American Journal of Human Genetics, 81(6), 1232-1250. doi:10.1086/522238.
Abstract
We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders.
Share this page