Gerard Kempen

Publications

Displaying 1 - 14 of 14
  • Harbusch, K., & Kempen, G. (2000). Complexity of linear order computation in Performance Grammar, TAG and HPSG. In Proceedings of Fifth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5) (pp. 101-106).

    Abstract

    This paper investigates the time and space complexity of word order computation in the psycholinguistically motivated grammar formalism of Performance Grammar (PG). In PG, the first stage of syntax assembly yields an unordered tree ('mobile') consisting of a hierarchy of lexical frames (lexically anchored elementary trees). Associated with each lexica l frame is a linearizer—a Finite-State Automaton that locally computes the left-to-right order of the branches of the frame. Linearization takes place after the promotion component may have raised certain constituents (e.g. Wh- or focused phrases) into the domain of lexical frames higher up in the syntactic mobile. We show that the worst-case time and space complexity of analyzing input strings of length n is O(n5) and O(n4), respectively. This result compares favorably with the time complexity of word-order computations in Tree Adjoining Grammar (TAG). A comparison with Head-Driven Phrase Structure Grammar (HPSG) reveals that PG yields a more declarative linearization method, provided that the FSA is rewritten as an equivalent regular expression.
  • Kempen, G. (2000). Could grammatical encoding and grammatical decoding be subserved by the same processing module? Behavioral and Brain Sciences, 23, 38-39.
  • Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: A computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105-143.

    Abstract

    We present the design, implementation and simulation results of a psycholinguistic model of human syntactic processing that meets major empirical criteria. The parser operates in conjunction with a lexicalist grammar and is driven by syntactic information associated with heads of phrases. The dynamics of the model are based on competition by lateral inhibition ('competitive inhibition'). Input words activate lexical frames (i.e. elementary trees anchored to input words) in the mental lexicon, and a network of candidate 'unification links' is set up between frame nodes. These links represent tentative attachments that are graded rather than all-or-none. Candidate links that, due to grammatical or 'treehood' constraints, are incompatible, compete for inclusion in the final syntactic tree by sending each other inhibitory signals that reduce the competitor's attachment strength. The outcome of these local and simultaneous competitions is controlled by dynamic parameters, in particular by the Entry Activation and the Activation Decay rate of syntactic nodes, and by the Strength and Strength Build-up rate of Unification links. In case of a successful parse, a single syntactic tree is returned that covers the whole input string and consists of lexical frames connected by winning Unification links. Simulations are reported of a significant range of psycholinguistic parsing phenomena in both normal and aphasic speakers of English: (i) various effects of linguistic complexity (single versus double, center versus right-hand self-embeddings of relative clauses; the difference between relative clauses with subject and object extraction; the contrast between a complement clause embedded within a relative clause versus a relative clause embedded within a complement clause); (ii) effects of local and global ambiguity, and of word-class and syntactic ambiguity (including recency and length effects); (iii) certain difficulty-of-reanalysis effects (contrasts between local ambiguities that are easy to resolve versus ones that lead to serious garden-path effects); (iv) effects of agrammatism on parsing performance, in particular the performance of various groups of aphasic patients on several sentence types.
  • Dijkstra, T., & Kempen, G. (1984). Taal in uitvoering: Inleiding tot de psycholinguistiek. Groningen: Wolters-Noordhoff.
  • Kempen, G., & Sprangers, C. (Eds.). (1984). Kennis, mens en computer. Lisse: Swets & Zeitlinger.

    Abstract

    Essays van psychologen en linguı̈sten over de relatie hersens-computers.
  • Kempen, G. (1984). Taaltechnologie voor het Nederlands: Vorderingen bij de bouw van een Nederlandstalig dialoog- en auteursysteem. Toegepaste Taalwetenschap in Artikelen, 19, 48-58.
  • Kempen, G., Konst, L., & De Smedt, K. (1984). Taaltechnologie voor het Nederlands: Vorderingen bij de bouw van een Nederlandstalig dialoog- en auteursysteem. Informatie, 26, 878-881.
  • Nas, G., Kempen, G., & Hudson, P. (1984). De rol van spelling en klank bij woordherkenning tijdens het lezen. In A. Thomassen, L. Noordman, & P. Elling (Eds.), Het leesproces. Lisse: Swets & Zeitlinger.
  • Kempen, G. (1979). A study of syntactic bookkeeping during sentence production. In H. Ueckert, & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 361-368). Bern: Hans Huber.

    Abstract

    It is an important feature of the human sentence production system that semantic and syntactic processes may overlap in time and do not proceed strictly serially. That is, the process of building the syntactic form of an utterance does not always wait until the complete semantic content for that utterance has been decided upon. On the contrary, speakers will often start pronouncing the first words of a sentence while still working on further details of its semantic content. An important advantage is memory economy. Semantic and syntactic fragments do not have to occupy working memory until complete semantic and syntactic structures for an utterance have been computed. Instead, each semantic and syntactic fragment is processed as soon as possible and is kept in working memory for a minimum period of time. This raises the question of how the sentence production system can maintain syntactic coherence across syntactic fragments. Presumably there are processes of "syntactic bookkeeping" which (1) store in working memory those syntactic properties of a fragmentary sentence which are needed to eliminate ungrammatical continuations, and (2) check whether a prospective continuation is indeed compatible with the sentence constructed so far. In reaction time experiments where subjects described, under time pressure, simple static pictures of an action performed by an actor, the second aspect of syntactic bookkeeping could be demonstrated. This evidence is used for modelling bookkeeping processes as part of a computational sentence generator which aims at simulating the syntactic operations people carry out during spontaneous speech.
  • Kempen, G. (1979). La mise en paroles, aspects psychologiques de l'expression orale. Études de Linguistique Appliquée, 33, 19-28.

    Abstract

    Remarques sur les facteurs intervenant dans le processus de formulation des énoncés.
  • Kempen, G. (1979). Psychologie van de zinsbouw: Een Wundtiaanse inleiding. Nederlands Tijdschrift voor de Psychologie, 34, 533-551.

    Abstract

    The psychology of language as developed by Wilhelm Wundt in his fundamental work Die Sprache (1900) has a strongly mentalistic character. The dominating positions held by behaviorism in psychology and structuralism in linguistics have overruled Wundt’s language theory to the effect that it has remained relatively unknown. This situation has changed recently under the influence of transformational linguistics and cognitive psychology. The paper discusses how Wundt applied the basic psychological concepts of apperception and association to language behavior, in particular to the construction and production of sentences during unprepared speech. The final part of the paper is devoted to the work, published in 1917, of the Dutch linguistic scholar Jacques van Ginneken, who elaborated Wundt’s ideas towards an explanation of some syntactic phenomena during the language acquisition of children.
  • Kempen, G. (1979). Woordwaarde. De Psycholoog, 14, 577.
  • Levelt, W. J. M., & Kempen, G. (1979). Language. In J. A. Michon, E. G. J. Eijkman, & L. F. W. De Klerk (Eds.), Handbook of psychonomics (Vol. 2) (pp. 347-407). Amsterdam: North Holland.
  • Thomassen, A. J., & Kempen, G. (1979). Memory. In J. A. Michon, E. Eijkman, & L. Klerk (Eds.), Handbook of psychonomics (pp. 75-137 ). Amsterdam: North-Holland Publishing Company.

Share this page