Gerard Kempen

Publications

Displaying 1 - 15 of 15
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Smedt, K. (1987). Auteursomgevingen: Vijfde-generatie tekstverwerkers. Informatie, 29, 988-993.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Semdt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Smedt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G., & Hoenkamp, E. (1987). An incremental procedural grammar for sentence formulation. Cognitive Science, 11(2), 201-258.

    Abstract

    This paper presents a theory of the syntactic aspects of human sentence production. An important characteristic of unprepared speech is that overt pronunciation of a sentence can be initiated before the speaker has completely worked out the meaning content he or she is going to express in that sentence. Apparently, the speaker is able to build up a syntactically coherent utterance out of a series of syntactic fragments each rendering a new part of the meaning content. This incremental, left-to-right mode of sentence production is the central capability of the proposed Incremental Procedural Grammar (IPG). Certain other properties of spontaneous speech, as derivable from speech errors, hesitations, self-repairs, and language pathology, are accounted for as well. The psychological plausibility thus gained by the grammar appears compatible with a satisfactory level of linguistic plausibility in that sentences receive structural descriptions which are in line with current theories of grammar. More importantly, an explanation for the existence of configurational conditions on transformations and other linguistics rules is proposed. The basic design feature of IPG which gives rise to these psychologically and linguistically desirable properties, is the “Procedures + Stack” concept. Sentences are built not by a central constructing agency which overlooks the whole process but by a team of syntactic procedures (modules) which work-in parallel-on small parts of the sentence, have only a limited overview, and whose sole communication channel is a stock. IPG covers object complement constructions, interrogatives, and word order in main and subordinate clauses. It handles unbounded dependencies, cross-serial dependencies and coordination phenomena such as gapping and conjunction reduction. It is also capable of generating self-repairs and elliptical answers to questions. IPG has been implemented as an incremental Dutch sentence generator written in LISP.
  • Kempen, G. (Ed.). (1987). Natural language generation: New results in artificial intelligence, psychology and linguistics. Dordrecht: Nijhoff.
  • Kempen, G. (Ed.). (1987). Natuurlijke taal en kunstmatige intelligentie: Taal tussen mens en machine. Groningen: Wolters-Noordhoff.
  • Kempen, G. (1987). Tekstverwerking: De vijfde generatie. Informatie, 29, 402-406.
  • Pijls, F., Daelemans, W., & Kempen, G. (1987). Artificial intelligence tools for grammar and spelling instruction. Instructional Science, 16(4), 319-336. doi:10.1007/BF00117750.

    Abstract

    In The Netherlands, grammar teaching is an especially important subject in the curriculum of children aged 10-15 for several reasons. However, in spite of all attention and time invested, the results are poor. This article describes the problems and our attempt to overcome them by developing an intelligent computational instructional environment consisting of: a linguistic expert system, containing a module representing grammar and spelling rules and a number of modules to manipulate these rules; a didactic module; and a student interface with special facilities for grammar and spelling. Three prototypes of the functionality are discussed: BOUWSTEEN and COGO, which are programs for constructing and analyzing Dutch sentences; and TDTDT, a program for the conjugation of Dutch verbs.
  • Pijls, F., & Kempen, G. (1987). Kennistechnologische leermiddelen in het grammatica- en spellingonderwijs. Nederlands Tijdschrift voor de Psychologie, 42, 354-363.
  • De Smedt, K., & Kempen, G. (1987). Incremental sentence production, self-correction, and coordination. In G. Kempen (Ed.), Natural language generation: New results in artificial intelligence, psychology and linguistics (pp. 365-376). Dordrecht: Nijhoff.
  • Van Wijk, C., & Kempen, G. (1987). A dual system for producing self-repairs in spontaneous speech: Evidence from experimentally elicited corrections. Cognitive Psychology, 19, 403-440. doi:10.1016/0010-0285(87)90014-4.

    Abstract

    This paper presents a cognitive theory on the production and shaping of selfrepairs during speaking. In an extensive experimental study, a new technique is tried out: artificial elicitation of self-repairs. The data clearly indicate that two mechanisms for computing the shape of self-repairs should be distinguished. One is based on the repair strategy called reformulation, the second one on lemma substitution. W. Levelt’s (1983, Cognition, 14, 41- 104) well-formedness rule, which connects self-repairs to coordinate structures, is shown to apply only to reformulations. In case of lemma substitution, a totally different set of rules is at work. The linguistic unit of central importance in reformulations is the major syntactic constituent; in lemma substitutions it is a prosodic unit. the phonological phrase. A parametrization of the model yielded a very satisfactory fit between observed and reconstructed scores.
  • Kempen, G. (1983). Het artificiële-intelligentieparadigma. Ervaringen met een nieuwe methodologie voor cognitief-psychologisch onderzoek. In J. Raaijmakers, P. Hudson, & A. Wertheim (Eds.), Metatheoretische aspekten van de psychonomie (pp. 85-98). Deventer: Van Loghum Slaterus.
  • Kempen, G. (1983). Natural language facilities in information systems: Asset or liability? In J. Van Apeldoorn (Ed.), Man and information technology: Towards friendlier systems (pp. 81-86). Delft University Press.
  • Kempen, G., & Huijbers, P. (1983). The lexicalization process in sentence production and naming: Indirect election of words. Cognition, 14(2), 185-209. doi:10.1016/0010-0277(83)90029-X.

    Abstract

    A series of experiments is reported in which subjects describe simple visual scenes by means of both sentential and non-sentential responses. The data support the following statements about the lexicalization (word finding) process. (1) Words used by speakers in overt naming or sentence production responses are selected by a sequence of two lexical retrieval processes, the first yielding abstract pre-phonological items (Ll -items), the second one adding their phonological shapes (L2-items). (2) The selection of several Ll-items for a multi-word utterance can take place simultaneously. (3) A monitoring process is watching the output of Ll-lexicalization to check if it is in keeping with prevailing constraints upon utterance format. (4) Retrieval of the L2-item which corresponds with a given LI-item waits until the Ld-item has been checked by the monitor, and all other Ll-items needed for the utterance under construction have become available. A coherent picture of the lexicalization process begins to emerge when these characteristics are brought together with other empirical results in the area of naming and sentence production, e.g., picture naming reaction times (Seymour, 1979), speech errors (Garrett, 1980), and word order preferences (Bock, 1982).
  • Kempen, G. (1983). Wat betekent taalvaardigheid voor informatiesystemen? TNO project: Maandblad voor toegepaste wetenschappen, 11, 401-403.

Share this page