Gerard Kempen

Publications

Displaying 1 - 7 of 7
  • Udden, J., Hulten, A., Schoffelen, J.-M., Lam, N. H. L., Harbusch, K., Van den Bosch, A., Kempen, G., Petersson, K. M., & Hagoort, P. (2022). Supramodal sentence processing in the human brain: fMRI evidence for the influence of syntactic complexity in more than 200 participants. Neurobiology of Language, 3(4), 575-598. doi:10.1162/nol_a_00076.

    Abstract

    This study investigated two questions. One is: To what degree is sentence processing beyond single words independent of the input modality (speech vs. reading)? The second question is: Which parts of the network recruited by both modalities is sensitive to syntactic complexity? These questions were investigated by having more than 200 participants read or listen to well-formed sentences or series of unconnected words. A largely left-hemisphere frontotemporoparietal network was found to be supramodal in nature, i.e., independent of input modality. In addition, the left inferior frontal gyrus (LIFG) and the left posterior middle temporal gyrus (LpMTG) were most clearly associated with left-branching complexity. The left anterior temporal lobe (LaTL) showed the greatest sensitivity to sentences that differed in right-branching complexity. Moreover, activity in LIFG and LpMTG increased from sentence onset to end, in parallel with an increase of the left-branching complexity. While LIFG, bilateral anterior temporal lobe, posterior MTG, and left inferior parietal lobe (LIPL) all contribute to the supramodal unification processes, the results suggest that these regions differ in their respective contributions to syntactic complexity related processing. The consequences of these findings for neurobiological models of language processing are discussed.

    Additional information

    supporting information
  • Harbusch, K., & Kempen, G. (2000). Complexity of linear order computation in Performance Grammar, TAG and HPSG. In Proceedings of Fifth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5) (pp. 101-106).

    Abstract

    This paper investigates the time and space complexity of word order computation in the psycholinguistically motivated grammar formalism of Performance Grammar (PG). In PG, the first stage of syntax assembly yields an unordered tree ('mobile') consisting of a hierarchy of lexical frames (lexically anchored elementary trees). Associated with each lexica l frame is a linearizer—a Finite-State Automaton that locally computes the left-to-right order of the branches of the frame. Linearization takes place after the promotion component may have raised certain constituents (e.g. Wh- or focused phrases) into the domain of lexical frames higher up in the syntactic mobile. We show that the worst-case time and space complexity of analyzing input strings of length n is O(n5) and O(n4), respectively. This result compares favorably with the time complexity of word-order computations in Tree Adjoining Grammar (TAG). A comparison with Head-Driven Phrase Structure Grammar (HPSG) reveals that PG yields a more declarative linearization method, provided that the FSA is rewritten as an equivalent regular expression.
  • Kempen, G. (2000). Could grammatical encoding and grammatical decoding be subserved by the same processing module? Behavioral and Brain Sciences, 23, 38-39.
  • Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: A computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105-143.

    Abstract

    We present the design, implementation and simulation results of a psycholinguistic model of human syntactic processing that meets major empirical criteria. The parser operates in conjunction with a lexicalist grammar and is driven by syntactic information associated with heads of phrases. The dynamics of the model are based on competition by lateral inhibition ('competitive inhibition'). Input words activate lexical frames (i.e. elementary trees anchored to input words) in the mental lexicon, and a network of candidate 'unification links' is set up between frame nodes. These links represent tentative attachments that are graded rather than all-or-none. Candidate links that, due to grammatical or 'treehood' constraints, are incompatible, compete for inclusion in the final syntactic tree by sending each other inhibitory signals that reduce the competitor's attachment strength. The outcome of these local and simultaneous competitions is controlled by dynamic parameters, in particular by the Entry Activation and the Activation Decay rate of syntactic nodes, and by the Strength and Strength Build-up rate of Unification links. In case of a successful parse, a single syntactic tree is returned that covers the whole input string and consists of lexical frames connected by winning Unification links. Simulations are reported of a significant range of psycholinguistic parsing phenomena in both normal and aphasic speakers of English: (i) various effects of linguistic complexity (single versus double, center versus right-hand self-embeddings of relative clauses; the difference between relative clauses with subject and object extraction; the contrast between a complement clause embedded within a relative clause versus a relative clause embedded within a complement clause); (ii) effects of local and global ambiguity, and of word-class and syntactic ambiguity (including recency and length effects); (iii) certain difficulty-of-reanalysis effects (contrasts between local ambiguities that are easy to resolve versus ones that lead to serious garden-path effects); (iv) effects of agrammatism on parsing performance, in particular the performance of various groups of aphasic patients on several sentence types.
  • Kempen, G., & Vosse, T. (1989). Incremental syntactic tree formation in human sentence processing: A cognitive architecture based on activation decay and simulated annealing. Connection Science, 1(3), 273-290. doi:10.1080/09540098908915642.

    Abstract

    A new cognitive architecture is proposed for the syntactic aspects of human sentence processing. The architecture, called Unification Space, is biologically inspired but not based on neural nets. Instead it relies on biosynthesis as a basic metaphor. We use simulated annealing as an optimization technique which searches for the best configuration of isolated syntactic segments or subtrees in the final parse tree. The gradually decaying activation of individual syntactic nodes determines the ‘global excitation level’ of the system. This parameter serves the function of ‘computational temperature’ in simulated annealing. We have built a computer implementation of the architecture which simulates well-known sentence understanding phenomena. We report successful simulations of the psycholinguistic effects of clause embedding, minimal attachment, right association and lexical ambiguity. In addition, we simulated impaired sentence understanding as observable in agrammatic patients. Since the Unification Space allows for contextual (semantic and pragmatic) influences on the syntactic tree formation process, it belongs to the class of interactive sentence processing models.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.

Share this page