Gerard Kempen

Publications

Displaying 1 - 5 of 5
  • Kempen, G., & Harbusch, K. (2019). Mutual attraction between high-frequency verbs and clause types with finite verbs in early positions: Corpus evidence from spoken English, Dutch, and German. Language, Cognition and Neuroscience, 34(9), 1140-1151. doi:10.1080/23273798.2019.1642498.

    Abstract

    We report a hitherto unknown statistical relationship between the corpus frequency of finite verbs and their fixed linear positions (early vs. late) in finite clauses of English, Dutch, and German. Compared to the overall frequency distribution of verb lemmas in the corpora, high-frequency finite verbs are overused in main clauses, at the expense of nonfinite verbs. This finite versus nonfinite split of high-frequency verbs is basically absent from subordinate clauses. Furthermore, this “main-clause bias” (MCB) of high-frequency verbs is more prominent in German and Dutch (SOV languages) than in English (an SVO language). We attribute the MCB and its varying effect sizes to faster accessibility of high-frequency finite verbs, which (1) increases the probability for these verbs to land in clauses mandating early verb placement, and (2) boosts the activation of clause plans that assign verbs to early linear positions (in casu: clauses with SVO as opposed to SOV order).

    Additional information

    plcp_a_1642498_sm1530.pdf
  • Kempen, G., & Harbusch, K. (2016). Verb-second word order after German weil ‘because’: psycholinguistic theory from corpus-linguistic data. Glossa: a journal of general linguistics, 1(1): 3. doi:10.5334/gjgl.46.

    Abstract

    In present-day spoken German, subordinate clauses introduced by the connector weil ‘because’ occur with two orders of subject, finite verb, and object(s). In addition to weil clauses with verb-final word order (“VF”; standard in subordinate clauses) one often hears weil clauses with SVO, the standard order of main clauses (“verb-second”, V2). The “weil-V2” phenomenon is restricted to sentences where the weil clause follows the main clause, and is virtually absent from formal (written, edited) German, occurring only in extemporaneous speech. Extant accounts of weil-V2 focus on the interpretation of weil-V2 clauses by the hearer, in particular on the type of discourse relation licensed by weil-V2 vs. weil-VF: causal/propositional or inferential/epistemic. Focusing instead on the production of weil clauses by the speaker, we examine a collection of about 1,000 sentences featuring a causal connector (weil, da or denn) after the main clause, all extracted from a corpus of spoken German dialogues and annotated with tags denoting major prosodic and syntactic boundaries, and various types of disfluencies (pauses, hesitations). Based on the observed frequency patterns and on known linguistic properties of the connectors, we propose that weil-V2 is caused by miscoordination between the mechanisms for lexical retrieval and grammatical encoding: Due to its high frequency, the lexical item weil is often selected prematurely, while the grammatical encoder is still working on the syntactic shape of the weil clause. Weil-V2 arises when pragmatic and processing factors drive the encoder to discontinue the current sentence, and to plan the clause following weil in the form of the main clause of an independent, new sentence. Thus, the speaker continues with a V2 clause, seemingly in violation of the VF constraint imposed by the preceding weil. We also explore implications of the model regarding the interpretation of sentences containing causal connectors.
  • Kempen, G., & Vosse, T. (1989). Incremental syntactic tree formation in human sentence processing: A cognitive architecture based on activation decay and simulated annealing. Connection Science, 1(3), 273-290. doi:10.1080/09540098908915642.

    Abstract

    A new cognitive architecture is proposed for the syntactic aspects of human sentence processing. The architecture, called Unification Space, is biologically inspired but not based on neural nets. Instead it relies on biosynthesis as a basic metaphor. We use simulated annealing as an optimization technique which searches for the best configuration of isolated syntactic segments or subtrees in the final parse tree. The gradually decaying activation of individual syntactic nodes determines the ‘global excitation level’ of the system. This parameter serves the function of ‘computational temperature’ in simulated annealing. We have built a computer implementation of the architecture which simulates well-known sentence understanding phenomena. We report successful simulations of the psycholinguistic effects of clause embedding, minimal attachment, right association and lexical ambiguity. In addition, we simulated impaired sentence understanding as observable in agrammatic patients. Since the Unification Space allows for contextual (semantic and pragmatic) influences on the syntactic tree formation process, it belongs to the class of interactive sentence processing models.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.

Share this page