Pim Levelt

Primary tabs

Publications

Displaying 1 - 12 of 12
  • Cholin, J., & Levelt, W. J. M. (2009). Effects of syllable preparation and syllable frequency in speech production: Further evidence for syllabic units at a post-lexical level. Language and Cognitive Processes, 24, 662-684. doi:10.1080/01690960802348852.

    Abstract

    In the current paper, we asked at what level in the speech planning process speakers retrieve stored syllables. There is evidence that syllable structure plays an essential role in the phonological encoding of words (e.g., online syllabification and phonological word formation). There is also evidence that syllables are retrieved as whole units. However, findings that clearly pinpoint these effects to specific levels in speech planning are scarce. We used a naming variant of the implicit priming paradigm to contrast voice onset latencies for frequency-manipulated disyllabic Dutch pseudo-words. While prior implicit priming studies only manipulated the item's form and/or syllable structure overlap we introduced syllable frequency as an additional factor. If the preparation effect for syllables obtained in the implicit priming paradigm proceeds beyond phonological planning, i.e., includes the retrieval of stored syllables, then the preparation effect should differ for high- and low frequency syllables. The findings reported here confirm this prediction: Low-frequency syllables benefit significantly more from the preparation than high-frequency syllables. Our findings support the notion of a mental syllabary at a post-lexical level, between the levels of phonological and phonetic encoding.
  • Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.

    Abstract

    How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area.
  • Ehrich, V., & Levelt, W. J. M. (Eds.). (1982). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.3 1982. Nijmegen: MPI for Psycholinguistics.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M. (1982). Het lineariseringsprobleem van de spreker. Tijdschrift voor Taal- en Tekstwetenschap (TTT), 2(1), 1-15.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M., & Kelter, S. (1982). Surface form and memory in question answering. Cognitive Psychology, 14, 78-106. doi:10.1016/0010-0285(82)90005-6.

    Abstract

    Speakers tend to repeat materials from previous talk. This tendency is experimentally established and manipulated in various question-answering situations. It is shown that a question's surface form can affect the format of the answer given, even if this form has little semantic or conversational consequence, as in the pair Q: (At) what time do you close. A: “(At)five o'clock.” Answerers tend to match the utterance to the prepositional (nonprepositional) form of the question. This “correspondence effect” may diminish or disappear when, following the question, additional verbal material is presented to the answerer. The experiments show that neither the articulatory buffer nor long-term memory is normally involved in this retention of recent speech. Retaining recent speech in working memory may fulfill a variety of functions for speaker and listener, among them the correct production and interpretation of surface anaphora. Reusing recent materials may, moreover, be more economical than regenerating speech anew from a semantic base, and thus contribute to fluency. But the realization of this strategy requires a production system in which linguistic formulation can take place relatively independent of, and parallel to, conceptual planning.
  • Levelt, W. J. M. (1982). Science policy: Three recent idols, and a goddess. IPO Annual Progress Report, 17, 32-35.
  • Levelt, W. J. M. (1982). Zelfcorrecties in het spreekproces. KNAW: Mededelingen van de afdeling letterkunde, nieuwe reeks, 45(8), 215-228.
  • Levelt, W. J. M. (1965). Binocular brightness averaging and contour information. British Journal of Psychology, 56, 1-13.
  • Levelt, W. J. M. (1965). On binocular rivalry. PhD Thesis, Van Gorcum, Assen.

    Abstract

    PHD thesis, defended at the University of Leiden
  • Plomp, R., & Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548-560. doi:10.1121/1.1909741.

    Abstract

    Firstly, theories are reviewed on the explanation of tonal consonance as the singular nature of tone intervals with frequency ratios corresponding with small integer numbers. An evaluation of these explanations in the light of some experimental studies supports the hypothesis, as promoted by von Helmholtz, that the difference between consonant and dissonant intervals is related to beats of adjacent partials. This relation was studied more fully by experiments in which subjects had to judge simple-tone intervals as a function of test frequency and interval width. The results may be considered as a modification of von Helmholtz's conception and indicate that, as a function of frequency, the transition range between consonant and dissonant intervals is related to critical bandwidth. Simple-tone intervals are evaluated as consonant for frequency differences exceeding this bandwidth. whereas the most dissonant intervals correspond with frequency differences of about a quarter of this bandwidth. On the base of these results, some properties of consonant intervals consisting of complex tones are explained. To answer the question whether critical bandwidth also plays a rôle in music, the chords of two compositions (parts of a trio sonata of J. S. Bach and of a string quartet of A. Dvorák) were analyzed by computing interval distributions as a function of frequency and number of harmonics taken into account. The results strongly suggest that, indeed, critical bandwidth plays an important rôle in music: for a number of harmonics representative for musical instruments, the "density" of simultaneous partials alters as a function of frequency in the same way as critical bandwidth does.

Share this page