Displaying 1 - 21 of 21
-
Indefrey, P., & Levelt, W. J. M. (1999). A meta-analysis of neuroimaging experiments on word production. Neuroimage, 7, 1028.
-
Levelt, W. J. M. (1999). Language. In G. Adelman, & B. H. Smith (
Eds. ), Elsevier's encyclopedia of neuroscience (2nd enlarged and revised edition) (pp. 1005-1008). Amsterdam: Elsevier Science. -
Levelt, C. C., Schiller, N. O., & Levelt, W. J. M. (1999). A developmental grammar for syllable structure in the production of child language. Brain and Language, 68, 291-299.
Abstract
The order of acquisition of Dutch syllable types by first language learners is analyzed as following from an initial ranking and subsequent rerankings of constraints in an optimality theoretic grammar. Initially, structural constraints are all ranked above faithfulness constraints, leading to core syllable (CV) productions only. Subsequently, faithfulness gradually rises to the highest position in the ranking, allowing more and more marked syllable types to appear in production. Local conjunctions of Structural constraints allow for a more detailed analysis. -
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-38. doi:10.1017/S0140525X99001776.
Abstract
Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feedforward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER + +. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting. for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging. -
Levelt, W. J. M. (1999). Models of word production. Trends in Cognitive Sciences, 3, 223-232.
Abstract
Research on spoken word production has been approached from two angles. In one research tradition, the analysis of spontaneous or induced speech errors led to models that can account for speech error distributions. In another tradition, the measurement of picture naming latencies led to chronometric models accounting for distributions of reaction times in word production. Both kinds of models are, however, dealing with the same underlying processes: (1) the speaker’s selection of a word that is semantically and syntactically appropriate; (2) the retrieval of the word’s phonological properties; (3) the rapid syllabification of the word in context; and (4) the preparation of the corresponding articulatory gestures. Models of both traditions explain these processes in terms of activation spreading through a localist, symbolic network. By and large, they share the main levels of representation: conceptual/semantic, syntactic, phonological and phonetic. They differ in various details, such as the amount of cascading and feedback in the network. These research traditions have begun to merge in recent years, leading to highly constructive experimentation. Currently, they are like two similar knives honing each other. A single pair of scissors is in the making. -
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). Multiple perspectives on lexical access [authors' response ]. Behavioral and Brain Sciences, 22, 61-72. doi:10.1017/S0140525X99451775.
-
Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In C. M. Brown, & P. Hagoort (
Eds. ), The neurocognition of language (pp. 83-122). Oxford University Press. -
Schiller, N. O., Van Lieshout, P. H. H. M., Meyer, A. S., & Levelt, W. J. M. (1999). Does the syllable affiliation of intervocalic consonants have an articulatory basis? Evidence from electromagnetic midsagittal artculography. In B. Maassen, & P. Groenen (
Eds. ), Pathologies of speech and language. Advances in clinical phonetics and linguistics (pp. 342-350). London: Whurr Publishers. -
Schmitt, B. M., Meyer, A. S., & Levelt, W. J. M. (1999). Lexical access in the production of pronouns. Cognition, 69(3), 313-335. doi:doi:10.1016/S0010-0277(98)00073-0.
Abstract
Speakers can use pronouns when their conceptual referents are accessible from the preceding discourse, as in 'The flower is red. It turns blue'. Theories of language production agree that in order to produce a noun semantic, syntactic, and phonological information must be accessed. However, little is known about lexical access to pronouns. In this paper, we propose a model of pronoun access in German. Since the forms of German pronouns depend on the grammatical gender of the nouns they replace, the model claims that speakers must access the syntactic representation of the replaced noun (its lemma) to select a pronoun. In two experiments using the lexical decision during naming paradigm [Levelt, W.J.M., Schriefers, H., Vorberg, D., Meyer, A.S., Pechmann, T., Havinga, J., 1991a. The time course of lexical access in speech production: a study of picture naming. Psychological Review 98, 122-142], we investigated whether lemma access automatically entails the activation of the corresponding word form or whether a word form is only activated when the noun itself is produced, but not when it is replaced by a pronoun. Experiment 1 showed that during pronoun production the phonological form of the replaced noun is activated. Experiment 2 demonstrated that this phonological activation was not a residual of the use of the noun in the preceding sentence. Thus, when a pronoun is produced, the lemma and the phonological form of the replaced noun become reactivated. -
Bock, K., & Levelt, W. J. M. (1994). Language production: Grammatical encoding. In M. A. Gernsbacher (
Ed. ), Handbook of Psycholinguistics (pp. 945-984). San Diego,: Academic Press. -
Bouman, M. A., & Levelt, W. J. M. (1994). Werner E. Reichardt: Levensbericht. In H. W. Pleket (
Ed. ), Levensberichten en herdenkingen 1993 (pp. 75-80). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen. -
Jescheniak, J. D., & Levelt, W. J. M. (1994). Word frequency effects in speech production: Retrieval of syntactic information and of phonological form. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 824-843.
Abstract
In 7 experiments the authors investigated the locus of word frequency effects in speech production. Experiment 1 demonstrated a frequency effect in picture naming that was robust over repetitions. Experiments 2, 3, and 7 excluded contributions from object identification and initiation of articulation. Experiments 4 and 5 investigated whether the effect arises in accessing the syntactic word (lemma) by using a grammatical gender decision task. Although a frequency effect was found, it dissipated under repeated access to word's gender. Experiment 6 tested whether the robust frequency effect arises in accessing the phonological form (lexeme) by having Ss translate words that produced homophones. Low-frequent homophones behaved like high-frequent controls, inheriting the accessing speed of their high-frequent homophone twins. Because homophones share the lexeme, not the lemma, this suggests a lexeme-level origin of the robust effect. -
Levelt, W. J. M. (1994). Psycholinguistics. In A. M. Colman (
Ed. ), Companion Encyclopedia of Psychology: Vol. 1 (pp. 319-337). London: Routledge.Abstract
Linguistic skills are primarily tuned to the proper conduct of conversation. The innate ability to converse has provided species with a capacity to share moods, attitudes, and information of almost any kind, to assemble knowledge and skills, to plan coordinated action, to educate its offspring, in short, to create and transmit culture. In conversation the interlocutors are involved in negotiating meaning. Speaking is most complex cognitive-motor skill. It involves the conception of an intention, the selection of information whose expression will make that intention recognizable, the selection of appropriate words, the construction of a syntactic framework, the retrieval of the words’ sound forms, and the computation of an articulatory plan for each word and for the utterance as a whole. The question where communicative intentions come from is a psychodynamic question rather than a psycholinguistic one. Speaking is a form of social action, and it is in the context of action that intentions, goals, and subgoals develop. -
Levelt, W. J. M., & Wheeldon, L. (1994). Do speakers have access to a mental syllabary? Cognition, 50, 239-269. doi:10.1016/0010-0277(94)90030-2.
Abstract
The first, theoretical part of this paper sketches a framework for phonological encoding in which the speaker successively generates phonological syllables in connected speech. The final stage of this process, phonetic encoding, consists of accessing articulatory gestural scores for each of these syllables in a "mental syllabary". The second, experimental part studies various predictions derived from this theory. The main finding is a syllable frequency effect: words ending in a high-frequent syllable are named faster than words ending in a low-frequent syllable. As predicted, this syllable frequency effect is independent of and additive to the effect of word frequency on naming latency. The effect, moreover, is not due to the complexity of the word-final syllable. In the General Discussion, the syllabary model is further elaborated with respect to phonological underspecification and activation spreading. Alternative accounts of the empirical findings in terms of core syllables and demisyllables are considered. -
Levelt, W. J. M. (1994). Hoofdstukken uit de psychologie. Nederlands tijdschrift voor de psychologie, 49, 1-14.
-
Levelt, W. J. M. (1994). On the skill of speaking: How do we access words? In Proceedings ICSLP 94 (pp. 2253-2258). Yokohama: The Acoustical Society of Japan.
-
Levelt, W. J. M. (1994). Onder woorden brengen: Beschouwingen over het spreekproces. In Haarlemse voordrachten: voordrachten gehouden in de Hollandsche Maatschappij der Wetenschappen te Haarlem. Haarlem: Hollandsche maatschappij der wetenschappen.
-
Levelt, W. J. M. (1994). The skill of speaking. In P. Bertelson, P. Eelen, & G. d'Ydewalle (
Eds. ), International perspectives on psychological science: Vol. 1. Leading themes (pp. 89-103). Hove: Erlbaum. -
Levelt, W. J. M. (1994). What can a theory of normal speaking contribute to AAC? In ISAAC '94 Conference Book and Proceedings. Hoensbroek: IRV.
-
Praamstra, P., Meyer, A. S., & Levelt, W. J. M. (1994). Neurophysiological manifestations of auditory phonological processing: Latency variation of a negative ERP component timelocked to phonological mismatch. Journal of Cognitive Neuroscience, 6(3), 204-219. doi:10.1162/jocn.1994.6.3.204.
Abstract
Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 msec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments. -
Levelt, W. J. M., Richardson, G., & La Heij, W. (1985). Pointing and voicing in deictic expressions. Journal of Memory and Language, 24, 133-164. doi:10.1016/0749-596X(85)90021-X.
Abstract
The present paper studies how, in deictic expressions, the temporal interdependency of speech and gesture is realized in the course of motor planning and execution. Two theoretical positions were compared. On the “interactive” view the temporal parameters of speech and gesture are claimed to be the result of feedback between the two systems throughout the phases of motor planning and execution. The alternative “ballistic” view, however, predicts that the two systems are independent during the phase of motor execution, the temporal parameters having been preestablished in the planning phase. In four experiments subjects were requested to indicate which of an array of referent lights was momentarily illuminated. This was done by pointing to the light and/or by using a deictic expression (this/that light). The temporal and spatial course of the pointing movement was automatically registered by means of a Selspot opto-electronic system. By analyzing the moments of gesture initiation and apex, and relating them to the moments of speech onset, it was possible to show that, for deictic expressions, the ballistic view is very nearly correct.
Share this page