Displaying 1 - 24 of 24
-
Levelt, W. J. M. (2016). Localism versus holism. Historical origins of studying language in the brain. In R. Rubens, & M. Van Dijk (
Eds. ), Sartoniana vol. 29 (pp. 37-60). Ghent: Ghent University. -
Levelt, W. J. M. (2016). The first golden age of psycholinguistics 1865-World War I. In R. Rubens, & M. Van Dyck (
Eds. ), Sartoniana vol. 29 (pp. 15-36). Ghent: Ghent University. -
Levelt, W. J. M., & De Swaan, A. (2016). Levensbericht Nico Frijda. In Koninklijke Nederlandse Akademie van Wetenschappen (
Ed. ), Levensberichten en herdenkingen 2016 (pp. 16-25). Amsterdam: KNAW. -
Meyer, A. S., Huettig, F., & Levelt, W. J. M. (2016). Same, different, or closely related: What is the relationship between language production and comprehension? Journal of Memory and Language, 89, 1-7. doi:10.1016/j.jml.2016.03.002.
-
Towle, V. L., Lee, R., Spire, J.-P., & Levelt, W. J. M. (2016). Letter to the editor. Journal of Child Neurology, 31, 804. doi:10.1177/0883073815609154.
-
Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (
Ed. ), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.Abstract
This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production. -
Levelt, W. J. M. (2000). Uit talloos veel miljoenen. Natuur & Techniek, 68(11), 90.
-
Levelt, W. J. M. (2000). Dyslexie. Natuur & Techniek, 68(4), 64.
-
Levelt, W. J. M. (2000). Met twee woorden spreken [Simon Dik Lezing 2000]. Amsterdam: Vossiuspers AUP.
-
Levelt, W. J. M. (2000). Links en rechts: Waarom hebben we zo vaak problemen met die woorden? Natuur & Techniek, 68(7/8), 90.
-
Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (
Ed. ), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press. -
Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (
Eds. ), International handbook of psychology (pp. 151-167). London: SAGE publications. -
Levelt, C. C., Schiller, N. O., & Levelt, W. J. M. (2000). The acquisition of syllable types. Language Acquisition, 8(3), 237-263. doi:10.1207/S15327817LA0803_2.
Abstract
In this article, we present an account of developmental data regarding the acquisition of syllable types. The data come from a longitudinal corpus of phonetically transcribed speech of 12 children acquiring Dutch as their first language. A developmental order of acquisition of syllable types was deduced by aligning the syllabified data on a Guttman scale. This order could be analyzed as following from an initial ranking and subsequent rerankings in the grammar of the structural constraints ONSET, NO-CODA, *COMPLEX-O, and *COMPLEX-C; some local conjunctions of these constraints; and a faithfulness constraint FAITH. The syllable type frequencies in the speech surrounding the language learner are also considered. An interesting correlation is found between the frequencies and the order of development of the different syllable types. -
Levelt, W. J. M. (2000). The brain does not serve linguistic theory so easily [Commentary to target article by Grodzinksy]. Behavioral and Brain Sciences, 23(1), 40-41.
-
Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (
Ed. ), Encyclopedia of psychology (pp. 432-433). Oxford University Press. -
Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (
Eds. ), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press. -
Levelt, W. J. M., & Meyer, A. S. (2000). Word for word: Multiple lexical access in speech production. European Journal of Cognitive Psychology, 12(4), 433-452. doi:10.1080/095414400750050178.
Abstract
It is quite normal for us to produce one or two million word tokens every year. Speaking is a dear occupation and producing words is at the core of it. Still, producing even a single word is a highly complex affair. Recently, Levelt, Roelofs, and Meyer (1999) reviewed their theory of lexical access in speech production, which dissects the word-producing mechanism as a staged application of various dedicated operations. The present paper begins by presenting a bird eye's view of this mechanism. We then square the complexity by asking how speakers control multiple access in generating simple utterances such as a table and a chair. In particular, we address two issues. The first one concerns dependency: Do temporally contiguous access procedures interact in any way, or do they run in modular fashion? The second issue concerns temporal alignment: How much temporal overlap of processing does the system tolerate in accessing multiple content words, such as table and chair? Results from picture-word interference and eye tracking experiments provide evidence for restricted cases of dependency as well as for constraints on the temporal alignment of access procedures. -
Meyer, A. S., & Levelt, W. J. M. (2000). Merging speech perception and production [Comment on Norris, McQueen and Cutler]. Behavioral and Brain Sciences, 23(3), 339-340. doi:10.1017/S0140525X00373241.
Abstract
A comparison of Merge, a model of comprehension, and WEAVER, a model of production, raises five issues: (1) merging models of comprehension and production necessarily creates feedback; (2) neither model is a comprehensive account of word processing; (3) the models are incomplete in different ways; (4) the models differ in their handling of competition; (5) as opposed to WEAVER, Merge is a model of metalinguistic behavior. -
Levelt, W. J. M., & Ruijssenaars, A. (1995). Levensbericht Johan Joseph Dumont. In Jaarboek Koninklijke Nederlandse Akademie van Wetenschappen (pp. 31-36).
-
Levelt, W. J. M. (1995). Chapters of psychology: An interview with Wilhelm Wundt. In R. L. Solso, & D. W. Massaro (
Eds. ), The science of mind: 2001 and beyond (pp. 184-202). Oxford University Press. -
Levelt, W. J. M. (1995). Hoezo 'neuro'? Hoezo 'linguïstisch'? Intermediair, 31(46), 32-37.
-
Levelt, W. J. M. (1995). Psycholinguistics. In C. C. French, & A. M. Colman (
Eds. ), Cognitive psychology (reprint, pp. 39- 57). London: Longman. -
Levelt, W. J. M. (1995). The ability to speak: From intentions to spoken words. European Review, 3(1), 13-23. doi:10.1017/S1062798700001290.
Abstract
In recent decades, psychologists have become increasingly interested in our ability to speak. This paper sketches the present theoretical perspective on this most complex skill of homo sapiens. The generation of fluent speech is based on the interaction of various processing components. These mechanisms are highly specialized, dedicated to performing specific subroutines, such as retrieving appropriate words, generating morpho-syntactic structure, computing the phonological target shape of syllables, words, phrases and whole utterances, and creating and executing articulatory programmes. As in any complex skill, there is a self-monitoring mechanism that checks the output. These component processes are targets of increasingly sophisticated experimental research, of which this paper presents a few salient examples. -
Wheeldon, L. R., & Levelt, W. J. M. (1995). Monitoring the time course of phonological encoding. Journal of Memory and Language, 34(3), 311-334. doi:10.1006/jmla.1995.1014.
Abstract
Three experiments examined the time course of phonological encoding in speech production. A new methodology is introduced in which subjects are required to monitor their internal speech production for prespecified target segments and syllables. Experiment 1 demonstrated that word initial target segments are monitored significantly faster than second syllable initial target segments. The addition of a concurrent articulation task (Experiment 1b) had a limited effect on performance, excluding the possibility that subjects are monitoring a subvocal articulation of the carrier word. Moreover, no relationship was observed between the pattern of monitoring latencies and the timing of the targets in subjects′ overt speech. Subjects are not, therefore, monitoring an internal phonetic representation of the carrier word. Experiment 2 used the production monitoring task to replicate the syllable monitoring effect observed in speech perception experiments: responses to targets were faster when they corresponded to the initial syllable of the carrier word than when they did not. We conclude that subjects are monitoring their internal generation of a syllabified phonological representation. Experiment 3 provides more detailed evidence concerning the time course of the generation of this representation by comparing monitoring latencies to targets within, as well as between, syllables. Some amendments to current models of phonological encoding are suggested in light of these results.
Share this page