Pim Levelt

Primary tabs

Publications

Displaying 1 - 31 of 31
  • Damian, M. F., Vigliocco, G., & Levelt, W. J. M. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81, B77-B86. doi:10.1016/S0010-0277(01)00135-4.

    Abstract

    Two experiments investigated whether lexical retrieval for speaking can be characterized as a competitive process by assessing the effects of semantic context on picture and word naming in German. In Experiment 1 we demonstrated that pictures are named slower in the context of same-category items than in the context of items from various semantic categories, replicating findings by Kroll and Stewart (Journal of Memory and Language, 33 (1994) 149). In Experiment 2 we used words instead of pictures. Participants either named the words in the context of same- or different-category items, or produced the words together with their corresponding determiner. While in the former condition words were named faster in the context of samecategory items than of different-category items, the opposite pattern was obtained for the latter condition. These findings confirm the claim that the interfering effect of semantic context reflects competition in the retrieval of lexical entries in speaking.
  • Dobel, C. E., Meyer, A. S., & Levelt, W. J. M. (2001). Registrierung von Augenbewegungen bei Studien zur Sprachproduktion. In A. Zimmer (Ed.), Experimentelle Psychologie. Proceedings of 43. Tagung experimentell arbeitender Psychologen (pp. 116-122). Lengerich, Germany: Pabst Science Publishers.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M. (2001). De vlieger die (onverwacht) wel opgaat. Natuur & Techniek, 69(6), 60.
  • Levelt, W. J. M. (2001). Defining dyslexia. Science, 292, 1300-1301.
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98, 13464-13471. doi:10.1073/pnas.231459498.

    Abstract

    A core operation in speech production is the preparation of words from a semantic base. The theory of lexical access reviewed in this article covers a sequence of processing stages beginning with the speaker’s focusing on a target concept and ending with the initiation of articulation. The initial stages of preparation are concerned with lexical selection, which is zooming in on the appropriate lexical item in the mental lexicon. The following stages concern form encoding, i.e., retrieving a word’s morphemic phonological codes, syllabifying the word, and accessing the corresponding articulatory gestures. The theory is based on chronometric measurements of spoken word production, obtained, for instance, in picture-naming tasks. The theory is largely computationally implemented. It provides a handle on the analysis of multiword utterance production as well as a guide to the analysis and design of neuroimaging studies of spoken utterance production.
  • Levelt, W. J. M. (2001). Woorden ophalen. Natuur en Techniek, 69(10), 74.
  • Van der Meulen, F., Meyer, A. S., & Levelt, W. J. M. (2001). Eye movements during the production of nouns and pronouns. Memory & Cognition, 29(3), 512-521.

    Abstract

    Earlier research has established that speakers usually fixate the objects they name and that the viewing time for an object depends on the time necessary for object recognition and for the retrieval of its name. In three experiments, speakers produced pronouns and noun phrases to refer to new objects and to objects already known. Speakers looked less frequently and for shorter periods at the objects to be named when they had very recently seen or heard of these objects than when the objects were new. Looking rates were higher and viewing times longer in preparation of noun phrases than in preparation of pronouns. If it is assumed that there is a close relationship between eye gaze and visual attention, these results reveal (1) that speakers allocate less visual attention to given objects than to new ones and (2) that they allocate visual attention both less often and for shorter periods to objects they will refer to by a pronoun than to objects they will name in a full noun phrase. The experiments suggest that linguistic processing benefits, directly or indirectly, from allocation of visual attention to the referent object.
  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.

    Abstract

    This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production.
  • Levelt, W. J. M. (2000). Uit talloos veel miljoenen. Natuur & Techniek, 68(11), 90.
  • Levelt, W. J. M. (2000). Dyslexie. Natuur & Techniek, 68(4), 64.
  • Levelt, W. J. M. (2000). Met twee woorden spreken [Simon Dik Lezing 2000]. Amsterdam: Vossiuspers AUP.
  • Levelt, W. J. M. (2000). Links en rechts: Waarom hebben we zo vaak problemen met die woorden? Natuur & Techniek, 68(7/8), 90.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, C. C., Schiller, N. O., & Levelt, W. J. M. (2000). The acquisition of syllable types. Language Acquisition, 8(3), 237-263. doi:10.1207/S15327817LA0803_2.

    Abstract

    In this article, we present an account of developmental data regarding the acquisition of syllable types. The data come from a longitudinal corpus of phonetically transcribed speech of 12 children acquiring Dutch as their first language. A developmental order of acquisition of syllable types was deduced by aligning the syllabified data on a Guttman scale. This order could be analyzed as following from an initial ranking and subsequent rerankings in the grammar of the structural constraints ONSET, NO-CODA, *COMPLEX-O, and *COMPLEX-C; some local conjunctions of these constraints; and a faithfulness constraint FAITH. The syllable type frequencies in the speech surrounding the language learner are also considered. An interesting correlation is found between the frequencies and the order of development of the different syllable types.
  • Levelt, W. J. M. (2000). The brain does not serve linguistic theory so easily [Commentary to target article by Grodzinksy]. Behavioral and Brain Sciences, 23(1), 40-41.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levelt, W. J. M., & Meyer, A. S. (2000). Word for word: Multiple lexical access in speech production. European Journal of Cognitive Psychology, 12(4), 433-452. doi:10.1080/095414400750050178.

    Abstract

    It is quite normal for us to produce one or two million word tokens every year. Speaking is a dear occupation and producing words is at the core of it. Still, producing even a single word is a highly complex affair. Recently, Levelt, Roelofs, and Meyer (1999) reviewed their theory of lexical access in speech production, which dissects the word-producing mechanism as a staged application of various dedicated operations. The present paper begins by presenting a bird eye's view of this mechanism. We then square the complexity by asking how speakers control multiple access in generating simple utterances such as a table and a chair. In particular, we address two issues. The first one concerns dependency: Do temporally contiguous access procedures interact in any way, or do they run in modular fashion? The second issue concerns temporal alignment: How much temporal overlap of processing does the system tolerate in accessing multiple content words, such as table and chair? Results from picture-word interference and eye tracking experiments provide evidence for restricted cases of dependency as well as for constraints on the temporal alignment of access procedures.
  • Meyer, A. S., & Levelt, W. J. M. (2000). Merging speech perception and production [Comment on Norris, McQueen and Cutler]. Behavioral and Brain Sciences, 23(3), 339-340. doi:10.1017/S0140525X00373241.

    Abstract

    A comparison of Merge, a model of comprehension, and WEAVER, a model of production, raises five issues: (1) merging models of comprehension and production necessarily creates feedback; (2) neither model is a comprehensive account of word processing; (3) the models are incomplete in different ways; (4) the models differ in their handling of competition; (5) as opposed to WEAVER, Merge is a model of metalinguistic behavior.
  • Indefrey, P., & Levelt, W. J. M. (1999). A meta-analysis of neuroimaging experiments on word production. Neuroimage, 7, 1028.
  • Levelt, W. J. M. (1999). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (2nd enlarged and revised edition) (pp. 1005-1008). Amsterdam: Elsevier Science.
  • Levelt, C. C., Schiller, N. O., & Levelt, W. J. M. (1999). A developmental grammar for syllable structure in the production of child language. Brain and Language, 68, 291-299.

    Abstract

    The order of acquisition of Dutch syllable types by first language learners is analyzed as following from an initial ranking and subsequent rerankings of constraints in an optimality theoretic grammar. Initially, structural constraints are all ranked above faithfulness constraints, leading to core syllable (CV) productions only. Subsequently, faithfulness gradually rises to the highest position in the ranking, allowing more and more marked syllable types to appear in production. Local conjunctions of Structural constraints allow for a more detailed analysis.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1-38. doi:10.1017/S0140525X99001776.

    Abstract

    Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feedforward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER + +. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting. for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.
  • Levelt, W. J. M. (1999). Models of word production. Trends in Cognitive Sciences, 3, 223-232.

    Abstract

    Research on spoken word production has been approached from two angles. In one research tradition, the analysis of spontaneous or induced speech errors led to models that can account for speech error distributions. In another tradition, the measurement of picture naming latencies led to chronometric models accounting for distributions of reaction times in word production. Both kinds of models are, however, dealing with the same underlying processes: (1) the speaker’s selection of a word that is semantically and syntactically appropriate; (2) the retrieval of the word’s phonological properties; (3) the rapid syllabification of the word in context; and (4) the preparation of the corresponding articulatory gestures. Models of both traditions explain these processes in terms of activation spreading through a localist, symbolic network. By and large, they share the main levels of representation: conceptual/semantic, syntactic, phonological and phonetic. They differ in various details, such as the amount of cascading and feedback in the network. These research traditions have begun to merge in recent years, leading to highly constructive experimentation. Currently, they are like two similar knives honing each other. A single pair of scissors is in the making.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). Multiple perspectives on lexical access [authors' response ]. Behavioral and Brain Sciences, 22, 61-72. doi:10.1017/S0140525X99451775.
  • Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 83-122). Oxford University Press.
  • Schiller, N. O., Van Lieshout, P. H. H. M., Meyer, A. S., & Levelt, W. J. M. (1999). Does the syllable affiliation of intervocalic consonants have an articulatory basis? Evidence from electromagnetic midsagittal artculography. In B. Maassen, & P. Groenen (Eds.), Pathologies of speech and language. Advances in clinical phonetics and linguistics (pp. 342-350). London: Whurr Publishers.
  • Schmitt, B. M., Meyer, A. S., & Levelt, W. J. M. (1999). Lexical access in the production of pronouns. Cognition, 69(3), 313-335. doi:doi:10.1016/S0010-0277(98)00073-0.

    Abstract

    Speakers can use pronouns when their conceptual referents are accessible from the preceding discourse, as in 'The flower is red. It turns blue'. Theories of language production agree that in order to produce a noun semantic, syntactic, and phonological information must be accessed. However, little is known about lexical access to pronouns. In this paper, we propose a model of pronoun access in German. Since the forms of German pronouns depend on the grammatical gender of the nouns they replace, the model claims that speakers must access the syntactic representation of the replaced noun (its lemma) to select a pronoun. In two experiments using the lexical decision during naming paradigm [Levelt, W.J.M., Schriefers, H., Vorberg, D., Meyer, A.S., Pechmann, T., Havinga, J., 1991a. The time course of lexical access in speech production: a study of picture naming. Psychological Review 98, 122-142], we investigated whether lemma access automatically entails the activation of the corresponding word form or whether a word form is only activated when the noun itself is produced, but not when it is replaced by a pronoun. Experiment 1 showed that during pronoun production the phonological form of the replaced noun is activated. Experiment 2 demonstrated that this phonological activation was not a residual of the use of the noun in the preceding sentence. Thus, when a pronoun is produced, the lemma and the phonological form of the replaced noun become reactivated.

Share this page