Pim Levelt

Primary tabs

Publications

Displaying 1 - 15 of 15
  • Cholin, J., & Levelt, W. J. M. (2009). Effects of syllable preparation and syllable frequency in speech production: Further evidence for syllabic units at a post-lexical level. Language and Cognitive Processes, 24, 662-684. doi:10.1080/01690960802348852.

    Abstract

    In the current paper, we asked at what level in the speech planning process speakers retrieve stored syllables. There is evidence that syllable structure plays an essential role in the phonological encoding of words (e.g., online syllabification and phonological word formation). There is also evidence that syllables are retrieved as whole units. However, findings that clearly pinpoint these effects to specific levels in speech planning are scarce. We used a naming variant of the implicit priming paradigm to contrast voice onset latencies for frequency-manipulated disyllabic Dutch pseudo-words. While prior implicit priming studies only manipulated the item's form and/or syllable structure overlap we introduced syllable frequency as an additional factor. If the preparation effect for syllables obtained in the implicit priming paradigm proceeds beyond phonological planning, i.e., includes the retrieval of stored syllables, then the preparation effect should differ for high- and low frequency syllables. The findings reported here confirm this prediction: Low-frequency syllables benefit significantly more from the preparation than high-frequency syllables. Our findings support the notion of a mental syllabary at a post-lexical level, between the levels of phonological and phonetic encoding.
  • Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.

    Abstract

    How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area.
  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.

    Abstract

    This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production.
  • Levelt, W. J. M. (2000). Uit talloos veel miljoenen. Natuur & Techniek, 68(11), 90.
  • Levelt, W. J. M. (2000). Dyslexie. Natuur & Techniek, 68(4), 64.
  • Levelt, W. J. M. (2000). Met twee woorden spreken [Simon Dik Lezing 2000]. Amsterdam: Vossiuspers AUP.
  • Levelt, W. J. M. (2000). Links en rechts: Waarom hebben we zo vaak problemen met die woorden? Natuur & Techniek, 68(7/8), 90.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, C. C., Schiller, N. O., & Levelt, W. J. M. (2000). The acquisition of syllable types. Language Acquisition, 8(3), 237-263. doi:10.1207/S15327817LA0803_2.

    Abstract

    In this article, we present an account of developmental data regarding the acquisition of syllable types. The data come from a longitudinal corpus of phonetically transcribed speech of 12 children acquiring Dutch as their first language. A developmental order of acquisition of syllable types was deduced by aligning the syllabified data on a Guttman scale. This order could be analyzed as following from an initial ranking and subsequent rerankings in the grammar of the structural constraints ONSET, NO-CODA, *COMPLEX-O, and *COMPLEX-C; some local conjunctions of these constraints; and a faithfulness constraint FAITH. The syllable type frequencies in the speech surrounding the language learner are also considered. An interesting correlation is found between the frequencies and the order of development of the different syllable types.
  • Levelt, W. J. M. (2000). The brain does not serve linguistic theory so easily [Commentary to target article by Grodzinksy]. Behavioral and Brain Sciences, 23(1), 40-41.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levelt, W. J. M., & Meyer, A. S. (2000). Word for word: Multiple lexical access in speech production. European Journal of Cognitive Psychology, 12(4), 433-452. doi:10.1080/095414400750050178.

    Abstract

    It is quite normal for us to produce one or two million word tokens every year. Speaking is a dear occupation and producing words is at the core of it. Still, producing even a single word is a highly complex affair. Recently, Levelt, Roelofs, and Meyer (1999) reviewed their theory of lexical access in speech production, which dissects the word-producing mechanism as a staged application of various dedicated operations. The present paper begins by presenting a bird eye's view of this mechanism. We then square the complexity by asking how speakers control multiple access in generating simple utterances such as a table and a chair. In particular, we address two issues. The first one concerns dependency: Do temporally contiguous access procedures interact in any way, or do they run in modular fashion? The second issue concerns temporal alignment: How much temporal overlap of processing does the system tolerate in accessing multiple content words, such as table and chair? Results from picture-word interference and eye tracking experiments provide evidence for restricted cases of dependency as well as for constraints on the temporal alignment of access procedures.
  • Meyer, A. S., & Levelt, W. J. M. (2000). Merging speech perception and production [Comment on Norris, McQueen and Cutler]. Behavioral and Brain Sciences, 23(3), 339-340. doi:10.1017/S0140525X00373241.

    Abstract

    A comparison of Merge, a model of comprehension, and WEAVER, a model of production, raises five issues: (1) merging models of comprehension and production necessarily creates feedback; (2) neither model is a comprehensive account of word processing; (3) the models are incomplete in different ways; (4) the models differ in their handling of competition; (5) as opposed to WEAVER, Merge is a model of metalinguistic behavior.

Share this page