Displaying 1 - 4 of 4
-
Levelt, W. J. M. (2020). On becoming a physicist of mind. Annual Review of Linguistics, 6(1), 1-23. doi:10.1146/annurev-linguistics-011619-030256.
Abstract
In 1976, the German Max Planck Society established a new research enterprise in psycholinguistics, which became the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands. I was fortunate enough to be invited to direct this institute. It enabled me, with my background in visual and auditory psychophysics and the theory of formal grammars and automata, to develop a long-term chronometric endeavor to dissect the process of speaking. It led, among other work, to my book Speaking (1989) and to my research team's article in Brain and Behavioral Sciences “A Theory of Lexical Access in Speech Production” (1999). When I later became president of the Royal Netherlands Academy of Arts and Sciences, I helped initiate the Women for Science research project of the Inter Academy Council, a project chaired by my physicist sister at the National Institute of Standards and Technology. As an emeritus I published a comprehensive History of Psycholinguistics (2013). As will become clear, many people inspired and joined me in these undertakings. -
Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (
Ed. ), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.Abstract
Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020Additional information
Link to booklet - The Jerome Bruner Library: From New York to Nijmegen -
Cholin, J., & Levelt, W. J. M. (2009). Effects of syllable preparation and syllable frequency in speech production: Further evidence for syllabic units at a post-lexical level. Language and Cognitive Processes, 24, 662-684. doi:10.1080/01690960802348852.
Abstract
In the current paper, we asked at what level in the speech planning process speakers retrieve stored syllables. There is evidence that syllable structure plays an essential role in the phonological encoding of words (e.g., online syllabification and phonological word formation). There is also evidence that syllables are retrieved as whole units. However, findings that clearly pinpoint these effects to specific levels in speech planning are scarce. We used a naming variant of the implicit priming paradigm to contrast voice onset latencies for frequency-manipulated disyllabic Dutch pseudo-words. While prior implicit priming studies only manipulated the item's form and/or syllable structure overlap we introduced syllable frequency as an additional factor. If the preparation effect for syllables obtained in the implicit priming paradigm proceeds beyond phonological planning, i.e., includes the retrieval of stored syllables, then the preparation effect should differ for high- and low frequency syllables. The findings reported here confirm this prediction: Low-frequency syllables benefit significantly more from the preparation than high-frequency syllables. Our findings support the notion of a mental syllabary at a post-lexical level, between the levels of phonological and phonetic encoding. -
Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.
Abstract
How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area.
Share this page