Displaying 1 - 3 of 3
-
Piai, V., Rommers, J., & Knight, R. T. (2018). Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production. European Journal of Neuroscience, 48(7), 2622-2629. doi:10.1111/ejn.13695.
Abstract
Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested
that alpha–beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear
lead-in sentences that either constrain the final word (‘He locked the door with the’) or not (‘She walked in here with the’). The last
word is shown as a picture to be named. Previous studies have consistently found alpha–beta power decreases prior to picture
onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However,
the relative contribution of temporal versus frontal areas to alpha–beta power decreases is unknown. We recorded the electroencephalogram
from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral
frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect
in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the
alpha–beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior
lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical
clustering analyses of all patients’ lesion profiles, and behavioural and electrophysiological effects identified those two
patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left
lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha–beta power decreases underlying context-
driven word production. -
Piai, V., Roelofs, A., Rommers, J., & Maris, E. (2015). Beta oscillations reflect memory and motor aspects of spoken word production. Human brain mapping, 36(7), 2767-2780. doi:10.1002/hbm.22806.
Abstract
Two major components form the basis of spoken word production: the access of conceptual and lexical/phonological information in long-term memory, and motor preparation and execution of an articulatory program. Whereas the motor aspects of word production have been well characterized as reflected in alpha-beta desynchronization, the memory aspects have remained poorly understood. Using magnetoencephalography, we investigated the neurophysiological signature of not only motor but also memory aspects of spoken-word production. Participants named or judged pictures after reading sentences. To probe the involvement of the memory component, we manipulated sentence context. Sentence contexts were either constraining or nonconstraining toward the final word, presented as a picture. In the judgment task, participants indicated with a left-hand button press whether the picture was expected given the sentence. In the naming task, they named the picture. Naming and judgment were faster with constraining than nonconstraining contexts. Alpha-beta desynchronization was found for constraining relative to nonconstraining contexts pre-picture presentation. For the judgment task, beta desynchronization was observed in left posterior brain areas associated with conceptual processing and in right motor cortex. For the naming task, in addition to the same left posterior brain areas, beta desynchronization was found in left anterior and posterior temporal cortex (associated with memory aspects), left inferior frontal cortex, and bilateral ventral premotor cortex (associated with motor aspects). These results suggest that memory and motor components of spoken word production are reflected in overlapping brain oscillations in the beta band.Additional information
hbm22806-sup-0001-suppinfo1.docxFiles private
Request files -
Piai, V., Roelofs, A., & Roete, I. (2015). Semantic interference in picture naming during dual-task performance does not vary with reading ability. Quarterly Journal of Experimental Psychology, 68(9), 1758-68. doi:10.1080/17470218.2014.985689.
Abstract
Previous dual-task studies examining the locus of semantic interference of distractor words in picture naming have obtained diverging results. In these studies, participants manually responded to tones and named pictures while ignoring distractor words (picture-word interference, PWI) with varying stimulus onset asynchrony (SOA) between tone and PWI stimulus. Whereas some studies observed no semantic interference at short SOAs, other studies observed effects of similar magnitude at short and long SOAs. The absence of semantic interference in some studies may perhaps be due to better reading skill of participants in these than in the other studies. According to such a reading-ability account, participants' reading skill should be predictive of the magnitude of their interference effect at short SOAs. To test this account, we conducted a dual-task study with tone discrimination and PWI tasks and measured participants' reading ability. The semantic interference effect was of similar magnitude at both short and long SOAs. Participants' reading ability was predictive of their naming speed but not of their semantic interference effect, contrary to the reading ability account. We conclude that the magnitude of semantic interference in picture naming during dual-task performance does not depend on reading skill.
Share this page