Tineke Snijders

Publications

Displaying 1 - 3 of 3
  • Çetinçelik, M., Rowland, C. F., & Snijders, T. M. (2023). Ten-month-old infants’ neural tracking of naturalistic speech is not facilitated by the speaker’s eye gaze. Developmental Cognitive Neuroscience, 64: 101297. doi:10.1016/j.dcn.2023.101297.

    Abstract

    Eye gaze is a powerful ostensive cue in infant-caregiver interactions, with demonstrable effects on language acquisition. While the link between gaze following and later vocabulary is well-established, the effects of eye gaze on other aspects of language, such as speech processing, are less clear. In this EEG study, we examined the effects of the speaker’s eye gaze on ten-month-old infants’ neural tracking of naturalistic audiovisual speech, a marker for successful speech processing. Infants watched videos of a speaker telling stories, addressing the infant with direct or averted eye gaze. We assessed infants’ speech-brain coherence at stress (1–1.75 Hz) and syllable (2.5–3.5 Hz) rates, tested for differences in attention by comparing looking times and EEG theta power in the two conditions, and investigated whether neural tracking predicts later vocabulary. Our results showed that infants’ brains tracked the speech rhythm both at the stress and syllable rates, and that infants’ neural tracking at the syllable rate predicted later vocabulary. However, speech-brain coherence did not significantly differ between direct and averted gaze conditions and infants did not show greater attention to direct gaze. Overall, our results suggest significant neural tracking at ten months, related to vocabulary development, but not modulated by speaker’s gaze.

    Additional information

    supplementary material
  • Menn, K. H., Ward, E., Braukmann, R., Van den Boomen, C., Buitelaar, J., Hunnius, S., & Snijders, T. M. (2022). Neural tracking in infancy predicts language development in children with and without family history of autism. Neurobiology of Language, 3(3), 495-514. doi:10.1162/nol_a_00074.

    Abstract

    During speech processing, neural activity in non-autistic adults and infants tracks the speech envelope. Recent research in adults indicates that this neural tracking relates to linguistic knowledge and may be reduced in autism. Such reduced tracking, if present already in infancy, could impede language development. In the current study, we focused on children with a family history of autism, who often show a delay in first language acquisition. We investigated whether differences in tracking of sung nursery rhymes during infancy relate to language development and autism symptoms in childhood. We assessed speech-brain coherence at either 10 or 14 months of age in a total of 22 infants with high likelihood of autism due to family history and 19 infants without family history of autism. We analyzed the relationship between speech-brain coherence in these infants and their vocabulary at 24 months as well as autism symptoms at 36 months. Our results showed significant speech-brain coherence in the 10- and 14-month-old infants. We found no evidence for a relationship between speech-brain coherence and later autism symptoms. Importantly, speech-brain coherence in the stressed syllable rate (1–3 Hz) predicted later vocabulary. Follow-up analyses showed evidence for a relationship between tracking and vocabulary only in 10-month-olds but not 14-month-olds and indicated possible differences between the likelihood groups. Thus, early tracking of sung nursery rhymes is related to language development in childhood.
  • Vanden Bosch der Nederlanden, C. M., Joanisse, M. F., Grahn, J. A., Snijders, T. M., & Schoffelen, J.-M. (2022). Familiarity modulates neural tracking of sung and spoken utterances. NeuroImage, 252: 119049. doi:10.1016/j.neuroimage.2022.119049.

    Abstract

    Music is often described in the laboratory and in the classroom as a beneficial tool for memory encoding and retention, with a particularly strong effect when words are sung to familiar compared to unfamiliar melodies. However, the neural mechanisms underlying this memory benefit, especially for benefits related to familiar music are not well understood. The current study examined whether neural tracking of the slow syllable rhythms of speech and song is modulated by melody familiarity. Participants became familiar with twelve novel melodies over four days prior to MEG testing. Neural tracking of the same utterances spoken and sung revealed greater cerebro-acoustic phase coherence for sung compared to spoken utterances, but did not show an effect of familiar melody when stimuli were grouped by their assigned (trained) familiarity. When participant's subjective ratings of perceived familiarity during the MEG testing session were used to group stimuli, however, a large effect of familiarity was observed. This effect was not specific to song, as it was observed in both sung and spoken utterances. Exploratory analyses revealed some in-session learning of unfamiliar and spoken utterances, with increased neural tracking for untrained stimuli by the end of the MEG testing session. Our results indicate that top-down factors like familiarity are strong modulators of neural tracking for music and language. Participants’ neural tracking was related to their perception of familiarity, which was likely driven by a combination of effects from repeated listening, stimulus-specific melodic simplicity, and individual differences. Beyond simply the acoustic features of music, top-down factors built into the music listening experience, like repetition and familiarity, play a large role in the way we attend to and encode information presented in a musical context.

    Additional information

    supplementary materials

Share this page