Displaying 1 - 14 of 14
-
Ho, Y. Y. W., Evans, D. M., Montgomery, G. W., Henders, A. K., Kemp, J. P., Timpson, N. J., St Pourcain, B., Heath, A. C., Madden, P. A. F., Loesch, D. Z., McNevin, D., Daniel, R., Davey-Smith, G., Martin, N. G., & Medland, S. E. (2016). Common genetic variants influence whorls in fingerprint patterns. Journal of Investigative Dermatology, 136(4), 859-862. doi:10.1016/j.jid.2015.10.062.
-
Fan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y. and 17 moreFan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y., Ding, X., Wojciechowski, R., Young, T. L., Parssinen, O., Oexle, K., Pfeiffer, N., Bailey-Wilson, J. E., Paterson, A. D., Klaver, C. C. W., Plomin, R., Hammond, C. J., Mackey, D. A., He, M. G., Saw, S. M., Williams, C., Guggenheim, J. A., & Cream, C. (2016). Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 6: 25853. doi:10.1038/srep25853.
Abstract
Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Additional information
srep25853-s1.pdf -
Fan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C. and 83 moreFan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C., Miyake, M., Hewitt, A. W., Guo, X., Mazur, J., Huffman, J. E., Williams, K. M., Polasek, O., Campbell, H., Rudan, I., Vatavuk, Z., Wilson, J. F., Joshi, P. K., McMahon, G., St Pourcain, B., Evans, D. M., Simpson, C. L., Schwantes-An, T.-H., Igo, R. P., Mirshahi, A., Cougnard-Gregoire, A., Bellenguez, C., Blettner, M., Raitakari, O., Kähönen, M., Seppälä, I., Zeller, T., Meitinger, T., Ried, J. S., Gieger, C., Portas, L., Van Leeuwen, E. M., Amin, N., Uitterlinden, A. G., Rivadeneira, F., Hofman, A., Vingerling, J. R., Wang, Y. X., Wang, X., Boh, E.-T.-H., Ikram, M. K., Sabanayagam, C., Gupta, P., Tan, V., Zhou, L., Ho, C. E., Lim, W., Beuerman, R. W., Siantar, R., Tai, E.-S., Vithana, E., Mihailov, E., Khor, C.-C., Hayward, C., Luben, R. N., Foster, P. J., Klein, B. E., Klein, R., Wong, H.-S., Mitchell, P., Metspalu, A., Aung, T., Young, T. L., He, M., Pärssinen, O., Van Duijn, C. M., Wang, J. J., Williams, C., Jonas, J. B., Teo, Y.-Y., Mackey, D. A., Oexle, K., Yoshimura, N., Paterson, A. D., Pfeiffer, N., Wong, T.-Y., Baird, P. N., Stambolian, D., Bailey-Wilson, J. E., Cheng, C.-Y., Hammond, C. J., Klaver, C. C., Saw, S.-M., & Consortium for Refractive Error and Myopia (CREAM) (2016). Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 7: 11008. doi:10.1038/ncomms11008.
Abstract
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopiaAdditional information
Fan_etal_2016sup.pdf -
Hugh-Jones, D., Verweij, K. J. H., St Pourcain, B., & Abdellaoui, A. (2016). Assortative mating on educational attainment leads to genetic spousal resemblance for causal alleles. Intelligence, 59, 103-108. doi:10.1016/j.intell.2016.08.005.
Abstract
We examined whether assortative mating for educational attainment (“like marries like”) can be detected in the genomes of ~ 1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational attainment increases the genetic variance and heritability of the trait in the population, which may increase social inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is indicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23, p < 2 × 10− 16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p = 4 × 10− 8 and r = 0.19, p = 2 × 10− 14, for prediction from males to females and vice versa, respectively), and are themselves significantly correlated between spouses (r = 0.11, p = 7 × 10− 6). Our findings provide molecular genetic evidence for genetic assortative mating on education in the UK -
Middeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J. and 31 moreMiddeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J., Hudziak, J. J., Jugessur, A., Kemp, J. P., Krapohl, E., Martin, N. G., Murcia, M., Myhre, R., Ormel, J., Ring, S. M., Standl, M., Stergiakouli, E., Stoltenberg, C., Thiering, E., Timpson, N. J., Trzaskowski, M., van der Most, P. J., Wang, C., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Psychiatric Genomics Consortium ADHD Working Group, Nyholt, D. R., Medland, S. E., Neale, B., Jacobsson, B., Sunyer, J., Hartman, C. A., Whitehouse, A. J. O., Pennell, C. E., Heinrich, J., Plomin, R., Smith, G. D., Tiemeier, H., Posthuma, D., & Boomsma, D. I. (2016). A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts. Journal of the American Academy of Child & Adolescent Psychiatry, 55(10), 896-905. doi:10.1016/j.jaac.2016.05.025.
Abstract
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. -
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G. and 236 moreOkbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G., Brandsma, J., Pina Concas, M., Derringer, J., Furlotte, N. A., Galesloot, T. E., Girotto, G., Gupta, R., Hall, L. M., Harris, S. E., Hofer, E., Horikoshi, M., Huffman, J. E., Kaasik, K., Kalafati, I. P., Karlsson, R., Kong, A., Lahti, J., Lee, S. J. V. D., DeLeeuw, C., Lind, P. A., Lindgren, K.-.-O., Liu, T., Mangino, M., Marten, J., Mihailov, E., Miller, M. B., Van der Most, P. J., Oldmeadow, C., Payton, A., Pervjakova, N., Peyrot, W. J., Qian, Y., Raitakari, O., Rueedi, R., Salvi, E., Schmidt, B., Schraut, K. E., Shi, J., Smith, A. V., Poot, R. A., St Pourcain, B., Teumer, A., Thorleifsson, G., Verweij, N., Vuckovic, D., Wellmann, J., Westra, H.-.-J., Yang, J., Zhao, W., Zhu, Z., Alizadeh, B. Z., Amin, N., Bakshi, A., Baumeister, S. E., Biino, G., Bønnelykke, K., Boyle, P. A., Campbell, H., Cappuccio, F. P., Davies, G., De Neve, J.-.-E., Deloukas, P., Demuth, I., Ding, J., Eibich, P., Eisele, L., Eklund, N., Evans, D. M., Faul, J. D., Feitosa, M. F., Forstner, A. J., Gandin, I., Gunnarsson, B., Halldórsson, B. V., Harris, T. B., Heath, A. C., Hocking, L. J., Holliday, E. G., Homuth, G., Horan, M. A., Hottenga, J.-.-J., De Jager, P. L., Joshi, P. K., Jugessur, A., Kaakinen, M. A., Kähönen, M., Kanoni, S., Keltigangas-Järvinen, L., Kiemeney, L. A. L. M., Kolcic, I., Koskinen, S., Kraja, A. T., Kroh, M., Kutalik, Z., Latvala, A., Launer, L. J., Lebreton, M. P., Levinson, D. F., Lichtenstein, P., Lichtner, P., Liewald, D. C. M., Cohert Study, L., Loukola, A., Madden, P. A., Mägi, R., Mäki-Opas, T., Marioni, R. E., Marques-Vidal, P., Meddens, G. A., McMahon, G., Meisinger, C., Meitinger, T., Milaneschi, Y., Milani, L., Montgomery, G. W., Myhre, R., Nelson, C. P., Nyholt, D. R., Ollier, W. E. R., Palotie, A., Paternoster, L., Pedersen, N. L., Petrovic, K. E., Porteous, D. J., Räikkönen, K., Ring, S. M., Robino, A., Rostapshova, O., Rudan, I., Rustichini, A., Salomaa, V., Sanders, A. R., Sarin, A.-.-P., Schmidt, H., Scott, R. J., Smith, B. H., Smith, J. A., Staessen, J. A., Steinhagen-Thiessen, E., Strauch, K., Terracciano, A., Tobin, M. D., Ulivi, S., Vaccargiu, S., Quaye, L., Van Rooij, F. J. A., Venturini, C., Vinkhuyzen, A. A. E., Völker, U., Völzke, H., Vonk, J. M., Vozzi, D., Waage, J., Ware, E. B., Willemsen, G., Attia, J. R., Bennett, D. A., Berger, K., Bertram, L., Bisgaard, H., Boomsma, D. I., Borecki, I. B., Bültmann, U., Chabris, C. F., Cucca, F., Cusi, D., Deary, I. J., Dedoussis, G. V., Van Duijn, C. M., Eriksson, J. G., Franke, B., Franke, L., Gasparini, P., Gejman, P. V., Gieger, C., Grabe, H.-.-J., Gratten, J., Groenen, P. J. F., Gudnason, V., Van der Harst, P., Hayward, C., Hinds, D. A., Hoffmann, W., Hyppönen, E., Iacono, W. G., Jacobsson, B., Järvelin, M.-.-R., Jöckel, K.-.-H., Kaprio, J., Kardia, S. L. R., Lehtimäki, T., Lehrer, S. F., Magnusson, P. K. E., Martin, N. G., McGue, M., Metspalu, A., Pendleton, N., Penninx, B. W. J. H., Perola, M., Pirastu, N., Pirastu, M., Polasek, O., Posthuma, D., Power, C., Province, M. A., Samani, N. J., Schlessinger, D., Schmidt, R., Sørensen, T. I. A., Spector, T. D., Stefansson, K., Thorsteinsdottir, U., Thurik, A. R., Timpson, N. J., Tiemeier, H., Tung, J. Y., Uitterlinden, A. G., Vitart, V., Vollenweider, P., Weir, D. R., Wilson, J. F., Wright, A. F., Conley, D. C., Krueger, R. F., Davey Smith, G., Hofman, A., Laibson, D. I., Medland, S. E., Meyer, M. N., Yang, J., Johannesson, M., Visscher, P. M., Esko, T., Koellinger, P. D., Cesarini, D., & Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539-542. doi:10.1038/nature17671.
Abstract
Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases -
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E. and 23 morePappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E., Power, C., Raitakari, O. T., Ring, S. M., Rivadeneira, F., Rodriguez, A., Scheet, P. A., Seppälä, I., Snieder, H., Standl, M., Thiering, E., Timpson, N. J., Veenstra, R., Velders, F. P., Whitehouse, A. J. O., Smith, G. D., Heinrich, J., Hypponen, E., Lehtimäki, T., Middeldorp, C. M., Oldehinkel, A. J., Pennell, C. E., Boomsma, D. I., & Tiemeier, H. (2016). A genome-wide approach to children's aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 562-572. doi:10.1002/ajmg.b.32333.
Abstract
Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10–54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10−8). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning.Additional information
http://onlinelibrary.wiley.com/store/10.1002/ajmg.b.32333/asset/supinfo/ajmgb32… -
Robinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A. and 2 moreRobinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A., Smith, G. D., & Daly, M. J. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 48, 552-555. doi:10.1038/ng.3529.
Abstract
Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology.Additional information
ng.3529-S1.pdf -
Stock, N. M., Humphries, K., St Pourcain, B., Bailey, M., Persson, M., Ho, K. M., Ring, S., Marsh, C., Albery, L., Rumsey, N., & Sandy, J. (2016). Opportunities and Challenges in Establishing a Cohort Study: An Example From Cleft Lip/Palate Research in the United Kingdom. Cleft Palate-Craniofacial Journal, (3), 317-325. doi:10.1597/14-306.
Abstract
Full text and MPG-specific services(opens in a new window)|
Export
| Download | Add to List | More...
Cleft Palate-Craniofacial Journal
Volume 53, Issue 3, May 2016, Pages 317-325
Opportunities and challenges in establishing a cohort study: An example from cleft lip/palate research in the United Kingdom (Article)
Stock, N.M.a ,
Humphries, K.b,
St. Pourcain, B.b,
Bailey, M.b,
Persson, M.a,
Ho, K.M.b,
Ring, S.b,
Marsh, C.c,
Albery, L.c,
Rumsey, N.a,
Sandy, J.b
a Centre for Appearance Research, University of the West of England, Coldharbour Lane, Bristol, United Kingdom
b Faculty of Medicine and Dentistry, University of Bristol, United Kingdom
c South West Cleft Service, University Hospitals Bristol NHS Foundation Trust, United Kingdom
Hide additional affiliations
View references (32)
Abstract
Background: Cleft lip and/or palate (CL/P) is one of the most common birth conditions in the world, but little is known about its causes. Professional opinion remains divided as to which treatments may be the most beneficial for patients with CL/P, and the factors that contribute to psychological adjustment are poorly understood. The use of different methodological approaches and tools plays a key role in hampering efforts to address discrepancies within the evidence base. A new UK-wide program of research, The Cleft Collective, was established to combat many of these methodological challenges and to address some of the key research questions important to all CL/P stakeholders. Objective: To describe the establishment of CL/P cohort studies in the United Kingdom and to consider the many opportunities this resource will generate. Results: To date, protocols have been developed and implemented within most UK cleft teams. Biological samples, environmental information, and data pertaining to parental psychological well-being and child development are being collected successfully. Recruitment is currently on track to meet the ambitious target of approximately 9800 individuals from just more than 3000 families. Conclusions: The Cleft Collective cohort studies represent a significant step forward for research in the field of CL/P. The data collected will form a comprehensive resource of information about individuals with CL/P and their families. This resource will provide the basis for many future projects and collaborations, both in the United Kingdom and around the world. -
van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T. and 101 morevan den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T., Tanaka, T., Teumer, A., Viktorin, A., Wedenoja, J., Abdellaoui, A., Abecasis, G. R., Adkins, D. E., Agrawal, A., Allik, J., Appel, K., Bigdeli, T. B., Busonero, F., Campbell, H., Costa, P., Smith, G. D., Davies, G., de Wit, H., Ding, J., Engelhardt, B. E., Eriksson, J. G., Fedko, I. O., Ferrucci, L., Franke, B., Giegling, I., Grucza, R., Hartmann, A. M., Heath, A. C., Heinonen, K., Henders, A. K., Homuth, G., Hottenga, J.-J., Iacono, W. G., Janzing, J., Jokela, M., Karlsson, R., Kemp, J., Kirkpatrick, M. G., Latvala, A., Lehtimäki, T., Liewald, D. C., Madden, P. F., Magri, C., Magnusson, P. E., Marten, J., Maschio, A., Mbarek, H., Medland, S. E., Mihailov, E., Milaneschi, Y., Montgomery, G. W., Nauck, M., Nivard, M. G., Ouwens, K. G., Palotie, A., Pettersson, E., Polasek, O., Qian, Y., Pulkki-Råback, L., Raitakari, O., Realo, A., Rose, R. J., Ruggiero, D., Schmidt, C. O., Slutske, W. S., Sorice, R., Starr, J. M., St Pourcain, B., Sutin, A. R., Timpson, N. J., Trochet, H., Vermeulen, S., Vuoksimaa, E., Widen, E., Wouda, J., Wright, M. J., Zgaga, L., Porteous, D., Minelli, A., Palmer, A. A., Rujescu, D., Ciullo, M., Hayward, C., Rudan, I., Metspalu, A., Kaprio, J., Deary, I. J., Räikkönen, K., Wilson, J. F., Keltikangas-Järvinen, L., Bierut, L. J., Hettema, J. M., Grabe, H. J., Penninx, B. W. J. H., van Duijn, C. M., Evans, D. M., Schlessinger, D., Pedersen, N. L., Terracciano, A., McGue, M., Martin, N. G., & Boomsma, D. I. (2016). Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 46, 170-182. doi:10.1007/s10519-015-9735-5.
Abstract
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion. © 2015 The Author(s)Additional information
10519_2015_9735_MOESM1_ESM.docx -
Glaser, B., Nikolov, I., Chubb, D., Hamshere, M. L., Segurado, R., Moskvina, V., & Holmans, P. (2007). Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proceedings, 1(Suppl 1): 54.
Abstract
Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels. Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single importance would have reduced the number of possible combinations in our small data set by 61%, whereas joint importance measures would have been less efficient for marker pair reduction. This suggests that RF single importance measures, which are able to detect a wide range of interaction effects and are computationally very efficient, might be exploited as pre-screening tool for larger association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate highrisk genotype combinations. -
Hamshere, M. L., Segurado, R., Moskvina, V., Nikolov, I., Glaser, B., & Holmans, P. A. (2007). Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proceedings, 1 (Suppl 1), S100.
Abstract
Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p <} 0.001) and rheumatoid factor (RF) IgM (p {< 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates. -
Segurado, R., Hamshere, M. L., Glaser, B., Nikolov, I., Moskvina, V., & Holmans, P. A. (2007). Combining linkage data sets for meta-analysis and mega-analysis: the GAW15 rheumatoid arthritis data set. BMC Proceedings, 1(Suppl 1): S104.
Abstract
We have used the genome-wide marker genotypes from Genetic Analysis Workshop 15 Problem 2 to explore joint evidence for genetic linkage to rheumatoid arthritis across several samples. The data consisted of four high-density genome scans on samples selected for rheumatoid arthritis. We cleaned the data, removed intermarker linkage disequilibrium, and assembled the samples onto a common genetic map using genome sequence positions as a reference for map interpolation. The individual studies were combined first at the genotype level (mega-analysis) prior to a multipoint linkage analysis on the combined sample, and second using the genome scan meta-analysis method after linkage analysis of each sample. The two approaches were compared, and give strong support to the HLA locus on chromosome 6 as a susceptibility locus. Other regions of interest include loci on chromosomes 11, 2, and 12. -
Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.
Abstract
Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
Share this page