Beate St Pourcain

Publications

Displaying 1 - 13 of 13
  • Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K. and 341 moreGrasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K., Andersson, M., Ard, T., Armstrong, N. J., Ashley-Koch, A., Atkins, J. R., Bernard, M., Brouwer, R. M., Buimer, E. E. L., Bülow, R., Bürger, C., Cannon, D. M., Chakravarty, M., Chen, Q., Cheung, J. W., Couvy-Duchesne, B., Dale, A. M., Dalvie, S., De Araujo, T. K., De Zubicaray, G. I., De Zwarte, S. M. C., Den Braber, A., Doan, N. T., Dohm, K., Ehrlich, S., Engelbrecht, H.-R., Erk, S., Fan, C. C., Fedko, I. O., Foley, S. F., Ford, J. M., Fukunaga, M., Garrett, M. E., Ge, T., Giddaluru, S., Goldman, A. L., Green, M. J., Groenewold, N. A., Grotegerd, D., Gurholt, T. P., Gutman, B. A., Hansell, N. K., Harris, M. A., Harrison, M. B., Haswell, C. C., Hauser, M., Herms, S., Heslenfeld, D. J., Ho, N. F., Hoehn, D., Hoffmann, P., Holleran, L., Hoogman, M., Hottenga, J.-J., Ikeda, M., Janowitz, D., Jansen, I. E., Jia, T., Jockwitz, C., Kanai, R., Karama, S., Kasperaviciute, D., Kaufmann, T., Kelly, S., Kikuchi, M., Klein, M., Knapp, M., Knodt, A. R., Krämer, B., Lam, M., Lancaster, T. M., Lee, P. H., Lett, T. A., Lewis, L. B., Lopes-Cendes, I., Luciano, M., Macciardi, F., Marquand, A. F., Mathias, S. R., Melzer, T. R., Milaneschi, Y., Mirza-Schreiber, N., Moreira, J. C. V., Mühleisen, T. W., Müller-Myhsok, B., Najt, P., Nakahara, S., Nho, K., Olde Loohuis, L. M., Orfanos, D. P., Pearson, J. F., Pitcher, T. L., Pütz, B., Quidé, Y., Ragothaman, A., Rashid, F. M., Reay, W. R., Redlich, R., Reinbold, C. S., Repple, J., Richard, G., Riedel, B. C., Risacher, S. L., Rocha, C. S., Mota, N. R., Salminen, L., Saremi, A., Saykin, A. J., Schlag, F., Schmaal, L., Schofield, P. R., Secolin, R., Shapland, C. Y., Shen, L., Shin, J., Shumskaya, E., Sønderby, I. E., Sprooten, E., Tansey, K. E., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Turner, J. A., Uhlmann, A., Vallerga, C. L., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, L., Van Erp, T. G. M., Van Haren, N. E. M., Van Rooij, D., Van Tol, M.-J., Veldink, J. H., Verhoef, E., Walton, E., Wang, M., Wang, Y., Wardlaw, J. M., Wen, W., Westlye, L. T., Whelan, C. D., Witt, S. H., Wittfeld, K., Wolf, C., Wolfers, T., Wu, J. Q., Yasuda, C. L., Zaremba, D., Zhang, Z., Zwiers, M. P., Artiges, E., Assareh, A. A., Ayesa-Arriola, R., Belger, A., Brandt, C. L., Brown, G. G., Cichon, S., Curran, J. E., Davies, G. E., Degenhardt, F., Dennis, M. F., Dietsche, B., Djurovic, S., Doherty, C. P., Espiritu, R., Garijo, D., Gil, Y., Gowland, P. A., Green, R. C., Häusler, A. N., Heindel, W., Ho, B.-C., Hoffmann, W. U., Holsboer, F., Homuth, G., Hosten, N., Jack Jr., C. R., Jang, M., Jansen, A., Kimbrel, N. A., Kolskår, K., Koops, S., Krug, A., Lim, K. O., Luykx, J. J., Mathalon, D. H., Mather, K. A., Mattay, V. S., Matthews, S., Mayoral Van Son, J., McEwen, S. C., Melle, I., Morris, D. W., Mueller, B. A., Nauck, M., Nordvik, J. E., Nöthen, M. M., O’Leary, D. S., Opel, N., Paillère Martinot, M.-L., Pike, G. B., Preda, A., Quinlan, E. B., Rasser, P. E., Ratnakar, V., Reppermund, S., Steen, V. M., Tooney, P. A., Torres, F. R., Veltman, D. J., Voyvodic, J. T., Whelan, R., White, T., Yamamori, H., Adams, H. H. H., Bis, J. C., Debette, S., Decarli, C., Fornage, M., Gudnason, V., Hofer, E., Ikram, M. A., Launer, L., Longstreth, W. T., Lopez, O. L., Mazoyer, B., Mosley, T. H., Roshchupkin, G. V., Satizabal, C. L., Schmidt, R., Seshadri, S., Yang, Q., Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson’s Progression Markers Initiative, Alvim, M. K. M., Ames, D., Anderson, T. J., Andreassen, O. A., Arias-Vasquez, A., Bastin, M. E., Baune, B. T., Beckham, J. C., Blangero, J., Boomsma, D. I., Brodaty, H., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bustillo, J. R., Cahn, W., Cairns, M. J., Calhoun, V., Carr, V. J., Caseras, X., Caspers, S., Cavalleri, G. L., Cendes, F., Corvin, A., Crespo-Facorro, B., Dalrymple-Alford, J. C., Dannlowski, U., De Geus, E. J. C., Deary, I. J., Delanty, N., Depondt, C., Desrivières, S., Donohoe, G., Espeseth, T., Fernández, G., Fisher, S. E., Flor, H., Forstner, A. J., Francks, C., Franke, B., Glahn, D. C., Gollub, R. L., Grabe, H. J., Gruber, O., Håberg, A. K., Hariri, A. R., Hartman, C. A., Hashimoto, R., Heinz, A., Henskens, F. A., Hillegers, M. H. J., Hoekstra, P. J., Holmes, A. J., Hong, L. E., Hopkins, W. D., Hulshoff Pol, H. E., Jernigan, T. L., Jönsson, E. G., Kahn, R. S., Kennedy, M. A., Kircher, T. T. J., Kochunov, P., Kwok, J. B. J., Le Hellard, S., Loughland, C. M., Martin, N. G., Martinot, J.-L., McDonald, C., McMahon, K. L., Meyer-Lindenberg, A., Michie, P. T., Morey, R. A., Mowry, B., Nyberg, L., Oosterlaan, J., Ophoff, R. A., Pantelis, C., Paus, T., Pausova, Z., Penninx, B. W. J. H., Polderman, T. J. C., Posthuma, D., Rietschel, M., Roffman, J. L., Rowland, L. M., Sachdev, P. S., Sämann, P. G., Schall, U., Schumann, G., Scott, R. J., Sim, K., Sisodiya, S. M., Smoller, J. W., Sommer, I. E., St Pourcain, B., Stein, D. J., Toga, A. W., Trollor, J. N., Van der Wee, N. J. A., van 't Ent, D., Völzke, H., Walter, H., Weber, B., Weinberger, D. R., Wright, M. J., Zhou, J., Stein, J. L., Thompson, P. M., & Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484): eaay6690. doi:10.1126/science.aay6690.

    Abstract

    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
  • Hofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., Ahmad, S., Armstrong, N. J., Satizabal, C. L., Bernard, M., Bis, J. C., Gillespie, N. A., Luciano, M., Mishra, A., Scholz, M., Teumer, A., Xia, R., Jian, X., Mosley, T. H. and 79 moreHofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., Ahmad, S., Armstrong, N. J., Satizabal, C. L., Bernard, M., Bis, J. C., Gillespie, N. A., Luciano, M., Mishra, A., Scholz, M., Teumer, A., Xia, R., Jian, X., Mosley, T. H., Saba, Y., Pirpamer, L., Seiler, S., Becker, J. T., Carmichael, O., Rotter, J. I., Psaty, B. M., Lopez, O. L., Amin, N., Van der Lee, S. J., Yang, Q., Himali, J. J., Maillard, P., Beiser, A. S., DeCarli, C., Karama, S., Lewis, L., Harris, M., Bastin, M. E., Deary, I. J., Witte, A. V., Beyer, F., Loeffler, M., Mather, K. A., Schofield, P. R., Thalamuthu, A., Kwok, J. B., Wright, M. J., Ames, D., Trollor, J., Jiang, J., Brodaty, H., Wen, W., Vernooij, M. W., Hofman, A., Uitterlinden, A. G., Niessen, W. J., Wittfeld, K., Bülow, R., Völker, U., Pausova, Z., Pike, G. B., Maingault, S., Crivello, F., Tzourio, C., Amouyel, P., Mazoyer, B., Neale, M. C., Franz, C. E., Lyons, M. J., Panizzon, M. S., Andreassen, O. A., Dale, A. M., Logue, M., Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Stein, J. L., Thompson, P. M., Medland, S. E., ENIGMA-consortium, Sachdev, P. S., Kremen, W. S., Wardlaw, J. M., Villringer, A., Van Duijn, C. M., Grabe, H. J., Longstreth, W. T., Fornage, M., Paus, T., Debette, S., Ikram, M. A., Schmidt, H., Schmidt, R., & Seshadri, S. (2020). Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 11: 4796. doi:10.1038/s41467-020-18367-y.
  • Howe, L. J., Hemani, G., Lesseur, C., Gaborieau, V., Ludwig, K. U., Mangold, E., Brennan, P., Ness, A. R., St Pourcain, B., Smith, G. D., & Lewis, S. J. (2020). Evaluating shared genetic influences on nonsyndromic cleft lip/palate and oropharyngeal neoplasms. Genetic Epidemiology, 44(8), 924-933. doi:10.1002/gepi.22343.

    Abstract

    It has been hypothesised that nonsyndromic cleft lip/palate (nsCL/P) and cancer may share aetiological risk factors. Population studies have found inconsistent evidence for increased incidence of cancer in nsCL/P cases, but several genes (e.g.,CDH1,AXIN2) have been implicated in the aetiologies of both phenotypes. We aimed to evaluate shared genetic aetiology between nsCL/P and oral cavity/oropharyngeal cancers (OC/OPC), which affect similar anatomical regions. Using a primary sample of 5,048 OC/OPC cases and 5,450 controls of European ancestry and a replication sample of 750 cases and 336,319 controls from UK Biobank, we estimate genetic overlap using nsCL/P polygenic risk scores (PRS) with Mendelian randomization analyses performed to evaluate potential causal mechanisms. In the primary sample, we found strong evidence for an association between a nsCL/P PRS and increased odds of OC/OPC (per standard deviation increase in score, odds ratio [OR]: 1.09; 95% confidence interval [CI]: 1.04, 1.13;p = .000053). Although confidence intervals overlapped with the primary estimate, we did not find confirmatory evidence of an association between the PRS and OC/OPC in UK Biobank (OR 1.02; 95% CI: 0.95, 1.10;p = .55). Mendelian randomization analyses provided evidence that major nsCL/P risk variants are unlikely to influence OC/OPC. Our findings suggest possible shared genetic influences on nsCL/P and OC/OPC.

    Additional information

    Supporting information
  • Howe, L. J., Lee, M. K., Sharp, G. C., Smith, G. D. W., St Pourcain, B., Shaffer, J. R., Ludwig, K. U., Mangold, E., Marazita, M. L., Feingold, E., Zhurov, A., Stergiakouli, E., Sandy, J., Richmond, S., Weinberg, S. M., Hemani, G., & Lewis, S. J. (2018). Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology. PLoS Genetics, 14(8): e1007501. doi:10.1371/journal.pgen.1007501.

    Abstract

    There is increasing evidence that genetic risk variants for non-syndromic cleft lip/palate (nsCL/P) are also associated with normal-range variation in facial morphology. However, previous analyses are mostly limited to candidate SNPs and findings have not been consistently replicated. Here, we used polygenic risk scores (PRS) to test for genetic overlap between nsCL/P and seven biologically relevant facial phenotypes. Where evidence was found of genetic overlap, we used bidirectional Mendelian randomization (MR) to test the hypothesis that genetic liability to nsCL/P is causally related to implicated facial phenotypes. Across 5,804 individuals of European ancestry from two studies, we found strong evidence, using PRS, of genetic overlap between nsCL/P and philtrum width; a 1 S.D. increase in nsCL/P PRS was associated with a 0.10 mm decrease in philtrum width (95% C.I. 0.054, 0.146; P = 2x10-5). Follow-up MR analyses supported a causal relationship; genetic variants for nsCL/P homogeneously cause decreased philtrum width. In addition to the primary analysis, we also identified two novel risk loci for philtrum width at 5q22.2 and 7p15.2 in our Genome-wide Association Study (GWAS) of 6,136 individuals. Our results support a liability threshold model of inheritance for nsCL/P, related to abnormalities in development of the philtrum.
  • Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L. and 57 moreLee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L., 23andMe Research Team, COGENT (Cognitive Genomics Consortium), Social Science Genetic Association Consortium, Alver, M., Bao, Y., Clark, D. W., Day, F. R., Furlotte, N. A., Joshi, P. K., Kemper, K. E., Kleinman, A., Langenberg, C., Mägi, R., Trampush, J. W., Verma, S. S., Wu, Y., Lam, M., Zhao, J. H., Zheng, Z., Boardman, J. D., Campbell, H., Freese, J., Harris, K. M., Hayward, C., Herd, P., Kumari, M., Lencz, T., Luan, J., Malhotra, A. K., Metspalu, A., Milani, L., Ong, K. K., Perry, J. R. B., Porteous, D. J., Ritchie, M. D., Smart, M. C., Smith, B. H., Tung, J. Y., Wareham, N. J., Wilson, J. F., Beauchamp, J. P., Conley, D. C., Esko, T., Lehrer, S. F., Magnusson, P. K. E., Oskarsson, S., Pers, T. H., Robinson, M. R., Thom, K., Watson, C., Chabris, C. F., Meyer, M. N., Laibson, D. I., Yang, J., Johannesson, M., Koellinger, P. D., Turley, P., Visscher, P. M., Benjamin, D. J., & Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 1112-1121. doi:10.1038/s41588-018-0147-3.

    Abstract

    Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance in educational attainment and 7–10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
  • Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., De Vries, P. S., Prins, B. P., Van der Most, P. J., Tanaka, T., Naderi, E., Rose, L. M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, R., Zhu, G., Macé, A., Sidore, C., Trompet, S., Mangino, M. and 267 moreLigthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., De Vries, P. S., Prins, B. P., Van der Most, P. J., Tanaka, T., Naderi, E., Rose, L. M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, R., Zhu, G., Macé, A., Sidore, C., Trompet, S., Mangino, M., Sabater-Lleal, M., Kemp, J. P., Abbasi, A., Kacprowski, T., Verweij, N., Smith, A. V., Huang, T., Marzi, C., Feitosa, M. F., Lohman, K. K., Kleber, M. E., Milaneschi, Y., Mueller, C., Huq, M., Vlachopoulou, E., Lyytikäinen, L.-P., Oldmeadow, C., Deelen, J., Perola, M., Zhao, J. H., Feenstra, B., LifeLines Cohort Study, Amini, M., CHARGE Inflammation Working Group, Lahti, J., Schraut, K. E., Fornage, M., Suktitipat, B., Chen, W.-M., Li, X., Nutile, T., Malerba, G., Luan, J., Bak, T., Schork, N., Del Greco M., F., Thiering, E., Mahajan, A., Marioni, R. E., Mihailov, E., Eriksson, J., Ozel, A. B., Zhang, W., Nethander, M., Cheng, Y.-C., Aslibekyan, S., Ang, W., Gandin, I., Yengo, L., Portas, L., Kooperberg, C., Hofer, E., Rajan, K. B., Schurmann, C., Den Hollander, W., Ahluwalia, T. S., Zhao, J., Draisma, H. H. M., Ford, I., Timpson, N., Teumer, A., Huang, H., Wahl, S., Liu, Y., Huang, J., Uh, H.-W., Geller, F., Joshi, P. K., Yanek, L. R., Trabetti, E., Lehne, B., Vozzi, D., Verbanck, M., Biino, G., Saba, Y., Meulenbelt, I., O’Connell, J. R., Laakso, M., Giulianini, F., Magnusson, P. K. E., Ballantyne, C. M., Hottenga, J. J., Montgomery, G. W., Rivadineira, F., Rueedi, R., Steri, M., Herzig, K.-H., Stott, D. J., Menni, C., Franberg, M., St Pourcain, B., Felix, S. B., Pers, T. H., Bakker, S. J. L., Kraft, P., Peters, A., Vaidya, D., Delgado, G., Smit, J. H., Großmann, V., Sinisalo, J., Seppälä, I., Williams, S. R., Holliday, E. G., Moed, M., Langenberg, C., Räikkönen, K., Ding, J., Campbell, H., Sale, M. M., Chen, Y.-D.-I., James, A. L., Ruggiero, D., Soranzo, N., Hartman, C. A., Smith, E. N., Berenson, G. S., Fuchsberger, C., Hernandez, D., Tiesler, C. M. T., Giedraitis, V., Liewald, D., Fischer, K., Mellström, D., Larsson, A., Wang, Y., Scott, W. R., Lorentzon, M., Beilby, J., Ryan, K. A., Pennell, C. E., Vuckovic, D., Balkau, B., Concas, M. P., Schmidt, R., Mendes de Leon, C. F., Bottinger, E. P., Kloppenburg, M., Paternoster, L., Boehnke, M., Musk, A. W., Willemsen, G., Evans, D. M., Madden, P. A. F., Kähönen, M., Kutalik, Z., Zoledziewska, M., Karhunen, V., Kritchevsky, S. B., Sattar, N., Lachance, G., Clarke, R., Harris, T. B., Raitakari, O. T., Attia, J. R., Van Heemst, D., Kajantie, E., Sorice, R., Gambaro, G., Scott, R. A., Hicks, A. A., Ferrucci, L., Standl, M., Lindgren, C. M., Starr, J. M., Karlsson, M., Lind, L., Li, J. Z., Chambers, J. C., Mori, T. A., De Geus, E. J. C. N., Heath, A. C., Martin, N. G., Auvinen, J., Buckley, B. M., De Craen, A. J. M., Waldenberger, M., Strauch, K., Meitinger, T., Scott, R. J., McEvoy, M., Beekman, M., Bombieri, C., Ridker, P. M., Mohlke, K. L., Pedersen, N. L., Morrison, A. C., Boomsma, D. I., Whitfield, J. B., Strachan, D. P., Hofman, A., Vollenweider, P., Cucca, F., Jarvelin, M.-R., Jukema, J. W., Spector, T. D., Hamsten, A., Zeller, T., Uitterlinden, A. G., Nauck, M., Gudnason, V., Qi, L., Grallert, H., Borecki, I. B., Rotter, J. I., März, W., Wild, P. S., Lokki, M.-L., Boyle, M., Salomaa, V., Melbye, M., Eriksson, J. G., Wilson, J. F., Penninx, B. W. J. H., Becker, D. M., Worrall, B. B., Gibson, G., Krauss, R. M., Ciullo, M., Zaza, G., Wareham, N. J., Oldehinkel, A. J., Palmer, L. J., Murray, S. S., Pramstaller, P. P., Bandinelli, S., Heinrich, J., Ingelsson, E., Deary, I. J., Ma¨gi, R., Vandenput, L., Van der Harst, P., Desch, K. C., Kooner, J. S., Ohlsson, C., Hayward, C., Lehtima¨ki, T., Shuldiner, A. R., Arnett, D. K., Beilin, L. J., Robino, A., Froguel, P., Pirastu, M., Jess, T., Koenig, W., Loos, R. J. F., Evans, D. A., Schmidt, H., Smith, G. D., Slagboom, P. E., Eiriksdottir, G., Morris, A. P., Psaty, B. M., Tracy, R. P., Nolte, I. M., Boerwinkle, E., Visvikis-Siest, S., Reiner, A. P., Gross, M., Bis, J. C., Franke, L., Franco, O. H., Benjamin, E. J., Chasman, D. I., Dupuis, J., Snieder, H., Dehghan, A., & Alizadeh, B. Z. (2018). Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. The American Journal of Human Genetics, 103(5), 691-706. doi:10.1016/j.ajhg.2018.09.009.

    Abstract

    C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10−8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.
  • Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018). The development of autistic social traits across childhood and adolescence in males and females. The Journal of Child Psychology and Psychiatry, 59(11), 1143-1151. doi:10.1111/jcpp.12913.

    Abstract

    Background

    Autism is a dimensional condition, representing the extreme end of a continuum of social competence that extends throughout the general population. Currently, little is known about how autistic social traits (ASTs), measured across the full spectrum of severity, develop during childhood and adolescence, including whether there are developmental differences between boys and girls. Therefore, we sought to chart the trajectories of ASTs in the general population across childhood and adolescence, with a focus on gender differences.
    Methods

    Participants were 9,744 males (n = 4,784) and females (n = 4,960) from ALSPAC, a UK birth cohort study. ASTs were assessed when participants were aged 7, 10, 13 and 16 years, using the parent‐report Social Communication Disorders Checklist. Data were modelled using latent growth curve analysis.
    Results

    Developmental trajectories of males and females were nonlinear, showing a decline from 7 to 10 years, followed by an increase between 10 and 16 years. At 7 years, males had higher levels of ASTs than females (mean raw score difference = 0.88, 95% CI [.72, 1.04]), and were more likely (odds ratio [OR] = 1.99; 95% CI, 1.82, 2.16) to score in the clinical range on the SCDC. By 16 years this gender difference had disappeared: males and females had, on average, similar levels of ASTs (mean difference = 0.00, 95% CI [−0.19, 0.19]) and were equally likely to score in the SCDC's clinical range (OR = 0.91, 95% CI, 0.73, 1.10). This was the result of an increase in females’ ASTs between 10 and 16 years.
    Conclusions

    There are gender‐specific trajectories of autistic social impairment, with females more likely than males to experience an escalation of ASTs during early‐ and midadolescence. It remains to be discovered whether the observed female adolescent increase in ASTs represents the genuine late onset of social difficulties or earlier, subtle, pre‐existing difficulties becoming more obvious.

    Additional information

    jcpp12913-sup-0001-supinfo.docx
  • St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Smith, G. D. (2018). Developmental changes within the genetic architecture of social communication behaviour: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598-606. doi:10.1016/j.biopsych.2017.09.020.

    Abstract

    Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct sets of genes that exert their maximum influence during different periods of development. This includes analyses of social-communciation difficulties that share, depending on their developmental stage, stronger genetic links with either Autism Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in unrelated individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as social-communication difficulties, during a ~10-year period spanning childhood and adolescence. Methods: Longitudinally assessed quantitative social-communication problems (N ≤ 5,551) were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using standardised measures, genetic architectures were investigated with novel multivariate genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome genotyping information. Analogous to twin research, GSEM included Cholesky decomposition, common pathway and independent pathway models. Results: A 2-factor Cholesky decomposition model described the data best. One genetic factor was common to SCDC measures across development, the other accounted for independent variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% of the genetic variation at 17 years. Conclusion: Using latent factor models, we identified developmental changes in the genetic architecture of social-communication difficulties that enhance the understanding of ASD and schizophrenia-related dimensions. More generally, GSEM present a framework for modelling shared genetic aetiologies between phenotypes and can provide prior information with respect to patterns and continuity of trait-disorder overlap
  • St Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D. and 3 moreSt Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D., Mortensen, P. B., Daly, M., & Davey Smith, G. (2018). ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, 23, 263-270. doi:10.1038/mp.2016.198.

    Abstract

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and
    schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on
    the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth
    (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social
    Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases,
    11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the
    Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social
    communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of
    genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms

    Additional information

    mp2016198x1.docx
  • Glaser, B., Nikolov, I., Chubb, D., Hamshere, M. L., Segurado, R., Moskvina, V., & Holmans, P. (2007). Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proceedings, 1(Suppl 1): 54.

    Abstract

    Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels. Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single importance would have reduced the number of possible combinations in our small data set by 61%, whereas joint importance measures would have been less efficient for marker pair reduction. This suggests that RF single importance measures, which are able to detect a wide range of interaction effects and are computationally very efficient, might be exploited as pre-screening tool for larger association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate highrisk genotype combinations.
  • Hamshere, M. L., Segurado, R., Moskvina, V., Nikolov, I., Glaser, B., & Holmans, P. A. (2007). Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proceedings, 1 (Suppl 1), S100.

    Abstract

    Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p <} 0.001) and rheumatoid factor (RF) IgM (p {< 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates.
  • Segurado, R., Hamshere, M. L., Glaser, B., Nikolov, I., Moskvina, V., & Holmans, P. A. (2007). Combining linkage data sets for meta-analysis and mega-analysis: the GAW15 rheumatoid arthritis data set. BMC Proceedings, 1(Suppl 1): S104.

    Abstract

    We have used the genome-wide marker genotypes from Genetic Analysis Workshop 15 Problem 2 to explore joint evidence for genetic linkage to rheumatoid arthritis across several samples. The data consisted of four high-density genome scans on samples selected for rheumatoid arthritis. We cleaned the data, removed intermarker linkage disequilibrium, and assembled the samples onto a common genetic map using genome sequence positions as a reference for map interpolation. The individual studies were combined first at the genotype level (mega-analysis) prior to a multipoint linkage analysis on the combined sample, and second using the genome scan meta-analysis method after linkage analysis of each sample. The two approaches were compared, and give strong support to the HLA locus on chromosome 6 as a susceptibility locus. Other regions of interest include loci on chromosomes 11, 2, and 12.
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.

Share this page