Beate St Pourcain

Publications

Displaying 1 - 23 of 23
  • Black , M. H., Buitelaar , J., Charman , T., Ecker , C., Gallagher , L., Hens , K., Jones , E., Murphy , D., Sadaka, Y., Schaer , M., St Pourcain, B., Wolke , D., Bonnot-Briey , S., Bougeron , T., & Bölte , S. (2024). A conceptual framework for data harmonization in mental health using the International Classification of Functioning Disability and Health (ICF): An example with the R2D2-MH Consortium. BMJ Mental Health, 27(1): e301283. doi:10.1136/bmjment-2024-301283.

    Abstract

    Introduction Advancing research and support for neurologically diverse populations requires novel data harmonisation methods that are capable of aligning with contemporary approaches to understanding health and disability.

    Objectives We present the International Classification of Functioning, Disability and Health (ICF) as a conceptual framework to support harmonisation of mental health data and present a proof of principle within the Risk and Resilience in Developmental Diversity and Mental Health (R2D2-MH) consortium.

    Method 138 measures from various mental health datasets were linked to the ICF following the WHO’s established linking rules.

    Findings Findings support the notion that the ICF can assist in the harmonisation of mental health data. The high level of shared ICF codes provides indications of where items may be readily harmonised to develop datasets that may align more readily with contemporary approaches to understanding health and disability. Although the linking process necessarily entails an element of subjectivity, the application of established rules can increase rigour and transparency of the harmonisation process.

    Conclusions We present the first steps towards data harmonisation in mental health that is compatible with contemporary approaches in psychiatry, being more capable of capturing diversity and aligning with more transdiagnostic and neurodiversity-affirmative ways of understanding data.

    Clinical implications Our findings show promise, but future work is needed to address quantitative harmonisation. Similarly, issues related to the traditionally ‘pathophysiological’ frameworks that existing datasets are often embedded in can hinder the full potential of harmonisation based on the ICF.

    Additional information

    data supplement
  • Hegemann, L., Corfield, E. C., Askelund, A. D., Allegrini, A. G., Askeland, R. B., Ronald, A., Ask, H., St Pourcain, B., Andreassen, O. A., Hannigan, L. J., & Havdahl, A. (2024). Genetic and phenotypic heterogeneity in early neurodevelopmental traits in the Norwegian Mother, Father and Child Cohort Study. Molecular Autism, 15: 25. doi:10.1186/s13229-024-00599-0.

    Abstract

    Background
    Autism and different neurodevelopmental conditions frequently co-occur, as do their symptoms at sub-diagnostic threshold levels. Overlapping traits and shared genetic liability are potential explanations.

    Methods
    In the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), we leverage item-level data to explore the phenotypic factor structure and genetic architecture underlying neurodevelopmental traits at age 3 years (N = 41,708–58,630) using maternal reports on 76 items assessing children’s motor and language development, social functioning, communication, attention, activity regulation, and flexibility of behaviors and interests.

    Results
    We identified 11 latent factors at the phenotypic level. These factors showed associations with diagnoses of autism and other neurodevelopmental conditions. Most shared genetic liabilities with autism, ADHD, and/or schizophrenia. Item-level GWAS revealed trait-specific genetic correlations with autism (items rg range = − 0.27–0.78), ADHD (items rg range = − 0.40–1), and schizophrenia (items rg range = − 0.24–0.34). We find little evidence of common genetic liability across all neurodevelopmental traits but more so for several genetic factors across more specific areas of neurodevelopment, particularly social and communication traits. Some of these factors, such as one capturing prosocial behavior, overlap with factors found in the phenotypic analyses. Other areas, such as motor development, seemed to have more heterogenous etiology, with specific traits showing a less consistent pattern of genetic correlations with each other.

    Conclusions
    These exploratory findings emphasize the etiological complexity of neurodevelopmental traits at this early age. In particular, diverse associations with neurodevelopmental conditions and genetic heterogeneity could inform follow-up work to identify shared and differentiating factors in the early manifestations of neurodevelopmental traits and their relation to autism and other neurodevelopmental conditions. This in turn could have implications for clinical screening tools and programs.
  • De Hoyos, L., Barendse, M. T., Schlag, F., Van Donkelaar, M. M. J., Verhoef, E., Shapland, C. Y., Klassmann, A., Buitelaar, J., Verhulst, B., Fisher, S. E., Rai, D., & St Pourcain, B. (2024). Structural models of genome-wide covariance identify multiple common dimensions in autism. Nature Communications, 15: 1770. doi:10.1038/s41467-024-46128-8.

    Abstract

    Common genetic variation has been associated with multiple symptoms in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we developed a structural equation modelling framework to directly model genome-wide covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent using a case-only design. We identified three independent genetic factors most strongly linked to language/cognition, behaviour and motor development, respectively, when studying a population-representative sample (N=5,331). These analyses revealed novel associations. For example, developmental delay in acquiring personal-social skills was inversely related to language, while developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-specific patterns, to phenotypic heterogeneity.
  • Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K. Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K., Kämpe, A., Li, G. H. Y., Avinun, R., Atkins, J. R., Hsu, F.-C., Amod, A. R., Lam, M., Tsuchida, A., Teunissen, M. W. A., Aygün, N., Patel, Y., Liang, D., Beiser, A. S., Beyer, F., Bis, J. C., Bos, D., Bryan, R. N., Bülow, R., Caspers, S., Catheline, G., Cecil, C. A. M., Dalvie, S., Dartigues, J.-F., DeCarli, C., Enlund-Cerullo, M., Ford, J. M., Franke, B., Freedman, B. I., Friedrich, N., Green, M. J., Haworth, S., Helmer, C., Hoffmann, P., Homuth, G., Ikram, M. K., Jack, C. R., Jahanshad, N., Jockwitz, C., Kamatani, Y., Knodt, A. R., Li, S., Lim, K., Longstreth, W. T., Macciardi, F., The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, The Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium, Mäkitie, O., Mazoyer, B., Medland, S. E., Miyamoto, S., Moebus, S., Mosley, T. H., Muetzel, R., Mühleisen, T. W., Nagata, M., Nakahara, S., Palmer, N. D., Pausova, Z., Preda, A., Quidé, Y., Reay, W. R., Roshchupkin, G. V., Schmidt, R., Schreiner, P. J., Setoh, K., Shapland, C. Y., Sidney, S., St Pourcain, B., Stein, J. L., Tabara, Y., Teumer, A., Uhlmann, A., Van de Lught, A., Vernooij, M. W., Werring, D. J., Windham, B. G., Witte, A. V., Wittfeld, K., Yang, Q., Yoshida, K., Brunner, H. G., Le Grand, Q., Sim, K., Stein, D. J., Bowden, D. W., Cairns, M. J., Hariri, A. R., Cheung, C.-L., Andersson, S., Villringer, A., Paus, T., Chichon, S., Calhoun, V. D., Crivello, F., Launer, L. J., White, T., Koudstaal, P. J., Houlden, H., Fornage, M., Matsuda, F., Grabe, H. J., Ikram, M. A., Debette, S., Thompson, P. M., Seshadri, S., & Adams, H. H. H. (2024). Genetic variants for head size share genes and pathways with cancer. Cell Reports Medicine, 5(5): 101529. doi:10.1016/j.xcrm.2024.101529.

    Abstract

    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.

    Additional information

    link to supplemental information
  • Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O. Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O., Saffery, R., Bønnelykke, K., Reilly, S., Pennell, C. E., Wake, M., Cecil, C. A., Plomin, R., Fisher, S. E., & St Pourcain, B. (2024). Genome-wide analyses of vocabulary size in infancy and toddlerhood: Associations with Attention-Deficit/Hyperactivity Disorder and cognition-related traits. Biological Psychiatry, 95(1), 859-869. doi:10.1016/j.biopsych.2023.11.025.

    Abstract

    Background

    The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD).

    Methods

    We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models.

    Results

    Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity.

    Conclusions

    The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.
  • Benyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J. and 23 moreBenyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J., Harris, S. E., Liewald, D. C., Scheet, P., Xiao, X., Hudziak, J. J., de Geus, E. J. C., Jaddoe, V. W. V., Starr, J. M., Verhulst, F. C., Pennell, C., Tiemeier, H., Iacono, W. G., Palmer, L. J., Montgomery, G. W., Martin, N. G., Boomsma, D. I., Posthuma, D., McGue, M., Wright, M. J., Davey Smith, G., Deary, I. J., Plomin, R., & Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253-258. doi:10.1038/mp.2012.184.

    Abstract

    Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6–18 years) from 17 989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22–46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10−15, 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10−5), 3.5% (P=10−3) and 0.5% (P=6 × 10−5) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.
  • Bolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E. and 37 moreBolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E., Widen, E., Palotie, A., Eriksson, J. G., Kaakinen, M., Järvelin, M.-R., Timpson, N. J., Davey Smith, G., Ring, S. M., Evans, D. M., St Pourcain, B., Tanaka, T., Milaneschi, Y., Bandinelli, S., Ferrucci, L., van der Harst, P., Rosmalen, J. G. M., Bakker, S. J. L., Verweij, N., Dullaart, R. P. F., Mahajan, A., Lindgren, C. M., Morris, A., Lind, L., Ingelsson, E., Anderson, L. N., Pennell, C. E., Lye, S. J., Matthews, S. G., Eriksson, J., Mellstrom, D., Ohlsson, C., Price, J. F., Strachan, M. W. J., Reynolds, R. M., Tiemeier, H., Walker, B. R., & CORtisol NETwork (CORNET) Consortium (2014). Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin. PLoS Genetics, 10(7): e1004474. doi:10.1371/journal.pgen.1004474.

    Abstract

    Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
  • Eaves, L. J., St Pourcain, B., Smith, G. D., York, T. P., & Evans, D. M. (2014). Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis (“M-GCTA”). Behavior Genetics, 44(5), 445-455. doi:10.1007/s10519-014-9666-6.

    Abstract

    Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from ~4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Kemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L. and 2 moreKemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L., Ohlsson, C., & Tobias, J. H. (2014). Does Bone Resorption Stimulate Periosteal Expansion? A Cross-Sectional Analysis of β-C-telopeptides of Type I Collagen (CTX), Genetic Markers of the RANKL Pathway, and Periosteal Circumference as Measured by pQCT. Journal of Bone and Mineral Research, 29(4), 1015-1024. doi:10.1002/jbmr.2093.

    Abstract

    We hypothesized that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodeling such as cortical bone mineral density (BMDC ). CTX and mid-tibial peripheral quantitative computed tomography (pQCT) scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass, and height. CTX was positively related to PC (β=0.19 [0.13, 0.24]) (coefficient=SD change per SD increase in CTX, 95% confidence interval)] but inversely associated with BMDC (β=-0.46 [-0.52,-0.40]) and cortical thickness [β=-0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) (β=0.09 [0.03, 0.14]). To examine the causal nature of this relationship, we then analyzed whether single-nucleotide polymorphisms (SNPs) within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding receptor activator of NF-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (p<}0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938), and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (p{<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.
  • Kemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K. and 13 moreKemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K., Koller, D. L., Econs, M. J., Williams, F. M. K., Foroud, T., Zillikens, M. C., Ohlsson, C., Hofman, A., Uitterlinden, A. G., Davey Smith, G., Jaddoe, V. W. V., Tobias, J. H., Rivadeneira, F., & Evans, D. M. (2014). Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genetics, 10(6): e1004423. doi:10.1371/journal.pgen.1004423.

    Abstract

    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
  • St Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L. and 12 moreSt Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L., Price, T. S., Dale, P. S., Pillas, D., Yliherva, A., Rodriguez, A., Golding, J., Jaddoe, V. W., Jarvelin, M.-R., Plomin, R., Pennell, C. E., Tiemeier, H., & Davey Smith, G. (2014). Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nature Communications, 5: 4831. doi:10.1038/ncomms5831.
  • St Pourcain, B., Skuse, D. H., Mandy, W. P., Wang, K., Hakonarson, H., Timpson, N. J., Evans, D. M., Kemp, J. P., Ring, S. M., McArdle, W. L., Golding, J., & Smith, G. D. (2014). Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Molecular Autism, 5: 18. doi:10.1186/2040-2392-5-18.

    Abstract

    Background Social-communication abilities are heritable traits, and their impairments overlap with the autism continuum. To characterise the genetic architecture of social-communication difficulties developmentally and identify genetic links with the autistic dimension, we conducted a genome-wide screen of social-communication problems at multiple time-points during childhood and adolescence. Methods Social-communication difficulties were ascertained at ages 8, 11, 14 and 17 years in a UK population-based birth cohort (Avon Longitudinal Study of Parents and Children; N ≤ 5,628) using mother-reported Social Communication Disorder Checklist scores. Genome-wide Complex Trait Analysis (GCTA) was conducted for all phenotypes. The time-points with the highest GCTA heritability were subsequently analysed for single SNP association genome-wide. Type I error in the presence of measurement relatedness and the likelihood of observing SNP signals near known autism susceptibility loci (co-location) were assessed via large-scale, genome-wide permutations. Association signals (P ≤ 10−5) were also followed up in Autism Genetic Resource Exchange pedigrees (N = 793) and the Autism Case Control cohort (Ncases/Ncontrols = 1,204/6,491). Results GCTA heritability was strongest in childhood (h2(8 years) = 0.24) and especially in later adolescence (h2(17 years) = 0.45), with a marked drop during early to middle adolescence (h2(11 years) = 0.16 and h2(14 years) = 0.08). Genome-wide screens at ages 8 and 17 years identified for the latter time-point evidence for association at 3p22.2 near SCN11A (rs4453791, P = 9.3 × 10−9; genome-wide empirical P = 0.011) and suggestive evidence at 20p12.3 at PLCB1 (rs3761168, P = 7.9 × 10−8; genome-wide empirical P = 0.085). None of these signals contributed to risk for autism. However, the co-location of population-based signals and autism susceptibility loci harbouring rare mutations, such as PLCB1, is unlikely to be due to chance (genome-wide empirical Pco-location = 0.007). Conclusions Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum.

    Additional information

    13229_2013_113_MOESM1_ESM.docx
  • Stergiakouli, E., Gaillard, R., Tavaré, J. M., Balthasar, N., Loos, R. J., Taal, H. R., Evans, D. M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A. G., Kemp, J. P., Hofman, A., Ring, S. M., Cole, T. J., Jaddoe, V. W. V., Davey Smith, G., & Timpson, N. J. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity, 22(10), 2252-2259. doi:10.1002/oby.20840.

    Abstract

    OBJECTIVE: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children. METHODS: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was performed. RESULTS: GWAS based on BMI[x] yielded marked differences in genomewide results profile. SNPs in ADCY3 (adenylate cyclase 3) were associated at genome-wide significance level (rs11676272 (0.28 kg/m(3.1) change per allele G (0.19, 0.38), P = 6 × 10(-9) ). In contrast, they showed marginal evidence of association with conventional BMI [rs11676272 (0.25 kg/m(2) (0.15, 0.35), P = 6 × 10(-7) )]. Results were replicated in an independent sample, the Generation R study. CONCLUSIONS: Analysis of BMI[x] showed differences to that of conventional BMI. The association signal at ADCY3 appeared to be driven by a missense variant and it was strongly correlated with expression of this gene. Our work highlights the importance of well understood phenotype use (and the danger of convention) in characterising genetic contributions to complex traits.

    Additional information

    oby20840-sup-0001-suppinfo.docx
  • Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J., Koellinger, P. D., Cesarini, D., Smith, G. D., Timpson, N. J., & Consortium}, {. S. G. A. (2014). Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children. PLoS ONE, 9(7): e100248. doi:10.1371/journal.pone.0100248.

    Abstract

    Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10-10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10-04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment.
  • Freathy, R. M., Mook-Kanamori, D. O., Sovio, U., Prokopenko, I., Timpson, N. J., Berry, D. J., Warrington, N. M., Widen, E., Hottenga, J. J., Kaakinen, M., Lange, L. A., Bradfield, J. P., Kerkhof, M., Marsh, J. A., Mägi, R., Chen, C.-M., Lyon, H. N., Kirin, M., Adair, L. S., Aulchenko, Y. S. and 64 moreFreathy, R. M., Mook-Kanamori, D. O., Sovio, U., Prokopenko, I., Timpson, N. J., Berry, D. J., Warrington, N. M., Widen, E., Hottenga, J. J., Kaakinen, M., Lange, L. A., Bradfield, J. P., Kerkhof, M., Marsh, J. A., Mägi, R., Chen, C.-M., Lyon, H. N., Kirin, M., Adair, L. S., Aulchenko, Y. S., Bennett, A. J., Borja, J. B., Bouatia-Naji, N., Charoen, P., Coin, L. J. M., Cousminer, D. L., de Geus, E. J. C., Deloukas, P., Elliott, P., Evans, D. M., Froguel, P., Glaser, B., Groves, C. J., Hartikainen, A.-L., Hassanali, N., Hirschhorn, J. N., Hofman, A., Holly, J. M. P., Hyppönen, E., Kanoni, S., Knight, B. A., Laitinen, J., Lindgren, C. M., McArdle, W. L., O'Reilly, P. F., Pennell, C. E., Postma, D. S., Pouta, A., Ramasamy, A., Rayner, N. W., Ring, S. M., Rivadeneira, F., Shields, B. M., Strachan, D. P., Surakka, I., Taanila, A., Tiesler, C., Uitterlinden, A. G., van Duijn, C. M., Wijga, A. H., Willemsen, G., Zhang, H., Zhao, J., Wilson, J. F., Steegers, E. A. P., Hattersley, A. T., Eriksson, J. G., Peltonen, L., Mohlke, K. L., Grant, S. F. A., Hakonarson, H., Koppelman, G. H., Dedoussis, G. V., Heinrich, J., Gillman, M. W., Palmer, L. J., Frayling, T. M., Boomsma, D. I., Davey Smith, G., Power, C., Jaddoe, V. W. V., Jarvelin, M.-R., McCarthy, M. I., The Genetic Investigation of ANthropometric Traits (GIANT) Consortium, The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), The Wellcome Trust Case Control Consortium (WTCCC), & the Early Growth Genetics (EGG) Consortium (2010). Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nature Genetics, 42(5), 430-435. doi:10.1038/ng.567.

    Abstract

    To identify genetic variants associated with birth weight, we meta-analyzed six genome-wide association (GWA) studies (n = 10,623 Europeans from pregnancy/birth cohorts) and followed up two lead signals in 13 replication studies (n = 27,591). rs900400 near LEKR1 and CCNL1 (P = 2 x 10(-35)) and rs9883204 in ADCY5 (P = 7 x 10(-15)) were robustly associated with birth weight. Correlated SNPs in ADCY5 were recently implicated in regulation of glucose levels and susceptibility to type 2 diabetes, providing evidence that the well-described association between lower birth weight and subsequent type 2 diabetes has a genetic component, distinct from the proposed role of programming by maternal nutrition. Using data from both SNPs, we found that the 9% of Europeans carrying four birth weight-lowering alleles were, on average, 113 g (95% CI 89-137 g) lighter at birth than the 24% with zero or one alleles (P(trend) = 7 x 10(-30)). The impact on birth weight is similar to that of a mother smoking 4-5 cigarettes per day in the third trimester of pregnancy.
  • Glaser, B., Ades, A. E., Lewis, S., Emmet, P., Lewis, G., Smith, G. D., & Zammit, S. (2010). Perinatal folate-related exposures and risk of psychotic symptoms in the ALSPAC birth cohort. Schizophrenia Research, 120, 177-183. doi:10.1016/j.schres.2010.03.006.

    Abstract

    BACKGROUND: It is unclear to what extent non-clinical psychotic experiences during childhood and adolescence share underlying aetiological mechanisms with schizophrenia. One candidate mechanism for schizophrenia involves the epigenetic status of the developing fetus, which depends on the internal folate-status of mother and child. Our study examines the relationships between multiple determinants of perinatal folate-status and development of psychotic experiences in adolescence. METHODS: Study participants were up to 5344 mother-child pairs from the Avon Longitudinal Study of Parents and their Children, UK, with information on maternal and/or child MTHFR C677T genotype, maternal folate intake (supplementation at 18/32- weeks gestation; dietary intake at 32- weeks gestation) and psychosis-like symptoms (PLIKS) for children assessed at age 12. RESULTS: Nominal evidence was observed that maternal folate supplementation at 18 weeks increased the odds of PLIKS in children (odds ratio(OR)=1.34; 95%-CI:[1.00;1.76]) and, consistent with this, that children of MTHFR C667T TT homozygous mothers had decreased odds of PLIKS (OR=0.72; 95%CI:[0.50;1.02]; recessive model) with strongest effects in boys (OR=0.44, 95%-CI:[0.22;0.79]; sex-specific p=0.029). None of the reported effects remained significant when corrected for multiple testing. CONCLUSIONS: Overall, this study found no support that maternal/child MTHFR C677T genotype and maternal folate intake during pregnancy contribute to common aetiological pathways that are shared between schizophrenia and non-clinical psychotic symptoms in adolescents, assuming that decreased folate-status increases schizophrenia risk.
  • Glaser, B., Shelton, K. H., & van den Bree, M. B. M. (2010). The moderating role of close friends in the relationship between conduct problems and adolescent substance use. Journal of Adolescent Health, 47(1), 35-42. doi:10.1016/j.jadohealth.2009.12.022.

    Abstract

    PURPOSE: Conduct problems and peer effects are among the strongest risk factors for adolescent substance use and problem use. However, it is unclear to what extent the effects of conduct problems and peer behavior interact, and whether adolescents' capacity to refuse the offer of substances may moderate such links. This study was conducted to examine relationships between conduct problems, close friends' substance use, and refusal assertiveness with adolescents' alcohol use problems, tobacco, and marijuana use. METHODS: We studied a population-based sample of 1,237 individuals from the Cardiff Study of All Wales and North West of England Twins aged 11-18 years. Adolescent and mother-reported information was obtained. Statistical analyses included cross-sectional and prospective logistic regression models and family-based permutations. RESULTS: Conduct problems and close friends' substance use were associated with increased adolescents' substance use, whereas refusal assertiveness was associated with lower use of cigarettes, alcohol, and marijuana. Peer substance use moderated the relationship between conduct problems and alcohol use problems, such that conduct problems were only related to increased risk for alcohol use problems in the presence of substance-using friends. This effect was found in both cross-sectional and prospective analyses and confirmed using the permutation approach. CONCLUSIONS: Reduced opportunities for interaction with alcohol-using peers may lower the risk of alcohol use problems in adolescents with conduct problems.
  • Heid, I. M., Henneman, P., Hicks, A., Coassin, S., Winkler, T., Aulchenko, Y. S., Fuchsberger, C., Song, K., Hivert, M.-F., Waterworth, D. M., Timpson, N. J., Richards, J. B., Perry, J. R. B., Tanaka, T., Amin, N., Kollerits, B., Pichler, I., Oostra, B. A., Thorand, B., Frants, R. R. and 22 moreHeid, I. M., Henneman, P., Hicks, A., Coassin, S., Winkler, T., Aulchenko, Y. S., Fuchsberger, C., Song, K., Hivert, M.-F., Waterworth, D. M., Timpson, N. J., Richards, J. B., Perry, J. R. B., Tanaka, T., Amin, N., Kollerits, B., Pichler, I., Oostra, B. A., Thorand, B., Frants, R. R., Illig, T., Dupuis, J., Glaser, B., Spector, T., Guralnik, J., Egan, J. M., Florez, J. C., Evans, D. M., Soranzo, N., Bandinelli, S., Carlson, O. D., Frayling, T. M., Burling, K., Smith, G. D., Mooser, V., Ferrucci, L., Meigs, J. B., Vollenweider, P., Dijk, K. W. v., Pramstaller, P., Kronenberg, F., & van Duijn, C. M. (2010). Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals. Atherosclerosis, 208(2), 412-420. doi:10.1016/j.atherosclerosis.2009.11.035.

    Abstract

    OBJECTIVE: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. METHODS: We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 x 10(-4) for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. RESULTS: The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3 x 10(-24)) as well as in both women- and men-specific analyses (p=8.7 x 10(-17) and p=2.5 x 10(-11), respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). CONCLUSIONS: We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin.
  • Medland, S. E., Zayats, T., Glaser, B., Nyholt, D. R., Gordon, S. D., Wright, M. J., Montgomery, G. W., Campbell, M. J., Henders, A. K., Timpson, N. J., Peltonen, L., Wolke, D., Ring, S. M., Deloukas, P., Martin, N. G., Smith, G. D., & Evans, D. M. (2010). A variant in LIN28B is associated with 2D:4D finger-length ratio, a putative retrospective biomarker of prenatal testosterone exposure. American Journal of Human Genetics, 86(4), 519-525. doi:10.1016/j.ajhg.2010.02.017.

    Abstract

    The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 x 10(-8)) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 x 10(-6)). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure.
  • Pillas, D., Hoggart, C. J., Evans, D. M., O'Reilly, P. F., Sipilä, K., Lähdesmäki, R., Millwood, I. Y., Kaakinen, M., Netuveli, G., Blane, D., Charoen, P., Sovio, U., Pouta, A., Freimer, N., Hartikainen, A.-L., Laitinen, J., Vaara, S., Glaser, B., Crawford, P., Timpson, N. J. and 10 morePillas, D., Hoggart, C. J., Evans, D. M., O'Reilly, P. F., Sipilä, K., Lähdesmäki, R., Millwood, I. Y., Kaakinen, M., Netuveli, G., Blane, D., Charoen, P., Sovio, U., Pouta, A., Freimer, N., Hartikainen, A.-L., Laitinen, J., Vaara, S., Glaser, B., Crawford, P., Timpson, N. J., Ring, S. M., Deng, G., Zhang, W., McCarthy, M. I., Deloukas, P., Peltonen, L., Elliott, P., Coin, L. J. M., Smith, G. D., & Jarvelin, M.-R. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genetics, 6(2): e1000856. doi:10.1371/journal.pgen.1000856.

    Abstract

    Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<}5x10(-8), and 5 with suggestive association (P{<5x10(-6)). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
  • St Pourcain, B., Wang, K., Glessner, J. T., Golding, J., Steer, C., Ring, S. M., Skuse, D. H., Grant, S. F. A., Hakonarson, H., & Davey Smith, G. (2010). Association Between a High-Risk Autism Locus on 5p14 and Social Communication Spectrum Phenotypes in the General Population. American Journal of Psychiatry, 167(11), 1364-1372. doi:10.1176/appi.ajp.2010.09121789.

    Abstract

    Objective: Recent genome-wide analysis identified a genetic variant on 5p14.1 (rs4307059), which is associated with risk for autism spectrum disorder. This study investigated whether rs4307059 also operates as a quantitative trait locus underlying a broader autism phenotype in the general population, focusing specifically on the social communication aspect of the spectrum. Method: Study participants were 7,313 children from the Avon Longitudinal Study of Parents and Children. Single-trait and joint-trait genotype associations were investigated for 29 measures related to language and communication, verbal intelligence, social interaction, and behavioral adjustment, assessed between ages 3 and 12 years. Analyses were performed in one-sided or directed mode and adjusted for multiple testing, trait interrelatedness, and random genotype dropout. Results: Single phenotype analyses showed that an increased load of rs4307059 risk allele is associated with stereotyped conversation and lower pragmatic communication skills, as measured by the Children's Communication Checklist (at a mean age of 9.7 years). In addition a trend toward a higher frequency of identification of special educational needs (at a mean age of 11.8 years) was observed. Variation at rs4307059 was also associated with the phenotypic profile of studied traits. This joint signal was fully explained neither by single-trait associations nor by overall behavioral adjustment problems but suggested a combined effect, which manifested through multiple sub-threshold social, communicative, and cognitive impairments. Conclusions: Our results suggest that common variation at 5p14.1 is associated with social communication spectrum phenotypes in the general population and support the role of rs4307059 as a quantitative trait locus for autism spectrum disorder.
  • Ruano, D., Abecasis, G. R., Glaser, B., Lips, E. S., Cornelisse, L. N., de Jong, A. P. H., Evans, D. M., Davey Smith, G., Timpson, N. J., Smit, A. B., Heutink, P., Verhage, M., & Posthuma, D. (2010). Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. American Journal of Human Genetics, 86(2), 113-125. doi:10.1016/j.ajhg.2009.12.006.

    Abstract

    Although cognitive ability is a highly heritable complex trait, only a few genes have been identified, explaining relatively low proportions of the observed trait variation. This implies that hundreds of genes of small effect may be of importance for cognitive ability. We applied an innovative method in which we tested for the effect of groups of genes defined according to cellular function (functional gene group analysis). Using an initial sample of 627 subjects, this functional gene group analysis detected that synaptic heterotrimeric guanine nucleotide binding proteins (G proteins) play an important role in cognitive ability (P(EMP) = 1.9 x 10(-4)). The association with heterotrimeric G proteins was validated in an independent population sample of 1507 subjects. Heterotrimeric G proteins are central relay factors between the activation of plasma membrane receptors by extracellular ligands and the cellular responses that these induce, and they can be considered a point of convergence, or a "signaling bottleneck." Although alterations in synaptic signaling processes may not be the exclusive explanation for the association of heterotrimeric G proteins with cognitive ability, such alterations may prominently affect the properties of neuronal networks in the brain in such a manner that impaired cognitive ability and lower intelligence are observed. The reported association of synaptic heterotrimeric G proteins with cognitive ability clearly points to a new direction in the study of the genetic basis of cognitive ability.

Share this page