Beate St Pourcain

Publications

Displaying 1 - 19 of 19
  • Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O. and 61 moreDemontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Howrigan, D. P., Huang, H., Maller, J. B., Martin, A. R., Martin, N. G., Moran, J., Pallesen, J., Palmer, D. S., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., Ripke, S., Robinson, E. B., Satterstrom, F. K., Stefansson, H., Stevens, C., Turley, P., Walters, G. B., Won, H., Wright, M. J., ADHD Working Group of the Psychiatric Genomics Consortium (PGC), EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, 23andme Research Team, Andreassen, O. A., Asherson, P., Burton, C. L., Boomsma, D. I., Cormand, B., Dalsgaard, S., Franke, B., Gelernter, J., Geschwind, D., Hakonarson, H., Haavik, J., Kranzler, H. R., Kuntsi, J., Langley, K., Lesch, K.-P., Middeldorp, C., Reif, A., Rohde, L. A., Roussos, P., Schachar, R., Sklar, P., Sonuga-Barke, E. J. S., Sullivan, P. F., Thapar, A., Tung, J. Y., Waldman, I. D., Medland, S. E., Stefansson, K., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Daly, M. J., Faraone, S. V., Børglum, A. D., & Neale, B. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51, 63-75. doi:10.1038/s41588-018-0269-7.

    Abstract

    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.

    Abstract

    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
  • Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K. and 55 moreGrove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K., Demontis, D., De Rubeis, S., Devlin, B., Djurovic, S., Dumont, A., Goldstein, J., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Hope, S., Howrigan, D. P., Huang, H., Hultman, C., Klei, L., Maller, J., Martin, J., Martin, A. R., Moran, J., Nyegaard, M., Nærland, T., Palmer, D. S., Palotie, A., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., St Pourcain, B., Qvist, P., Rehnström, K., Reichenberg, A., Reichert, J., Robinson, E. B., Roeder, K., Roussos, P., Saemundsen, E., Sandin, S., Satterstrom, F. K., Smith, G. D., Stefansson, H., Stefansson, K., Steinberg, S., Stevens, C., Sullivan, P. F., Turley, P., Walters, G. B., Xu, X., Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, BUPGEN, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Me Research Team, Geschwind, D., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Neale, B. M., Daly, M. J., & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51, 431-444. doi:10.1038/s41588-019-0344-8.

    Abstract

    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.

    Additional information

    Supplementary Text and Figures
  • Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J. and 7 moreGunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J., St Pourcain, B., Hublin, J.-J., Franke, B., Pääbo, S., Macciardi, F., Grabe, H. J., & Fisher, S. E. (2019). Neandertal introgression sheds light on modern human endocranial globularity. Current Biology, 29(1), 120-127. doi:10.1016/j.cub.2018.10.065.

    Abstract

    One of the features that distinguishes modern humans from our extinct relatives
    and ancestors is a globular shape of the braincase [1-4]. As the endocranium
    closely mirrors the outer shape of the brain, these differences might reflect
    altered neural architecture [4,5]. However, in the absence of fossil brain tissue the
    underlying neuroanatomical changes as well as their genetic bases remain
    elusive. To better understand the biological foundations of modern human
    endocranial shape, we turn to our closest extinct relatives, the Neandertals.
    Interbreeding between modern humans and Neandertals has resulted in
    introgressed fragments of Neandertal DNA in the genomes of present-day non-
    Africans [6,7]. Based on shape analyses of fossil skull endocasts, we derive a
    measure of endocranial globularity from structural magnetic resonance imaging
    (MRI) scans of thousands of modern humans, and study the effects of
    introgressed fragments of Neandertal DNA on this phenotype. We find that
    Neandertal alleles on chromosomes 1 and 18 are associated with reduced
    endocranial globularity. These alleles influence expression of two nearby genes,
    UBR4 and PHLPP1, which are involved in neurogenesis and myelination,
    respectively. Our findings show how integration of fossil skull data with archaic
    genomics and neuroimaging can suggest developmental mechanisms that may
    contribute to the unique modern human endocranial shape.

    Additional information

    mmc1.pdf mmc2.xlsx
  • Haworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L. and 15 moreHaworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L., Timmers, P. R. H. J., UK10K consortium, Davey Smith, G., Fisher, S. E., Wilson, J. F., Cole, T. J., Fernandez-Orth, D., Bønnelykke, K., Bisgaard, H., Pennell, C. E., Jaddoe, V. W. V., Dedoussis, G., Timpson, N. J., Zeggini, E., Vitart, V., & St Pourcain, B. (2019). Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 10: 357. doi:10.1038/s41467-018-07863-x.

    Abstract

    Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences affecting these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic influences and low-frequency genetic variation. To understand these influences, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV+HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.

    Additional information

    Supplementary Information
  • Howe, L., Lawson, D. J., Davies, N. M., St Pourcain, B., Lewis, S. J., Smith, G. D., & Hemani, G. (2019). Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nature Communications, 10: 5039. doi:10.1038/s41467-019-12424-x.

    Abstract

    Alcohol use is correlated within spouse-pairs, but it is difficult to disentangle effects of alcohol consumption on mate-selection from social factors or the shared spousal environment. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection. Here, we find strong evidence that an individual’s self-reported alcohol consumption and their genotype at rs1229984, a missense variant in ADH1B, are associated with their partner’s self-reported alcohol use. Applying Mendelian randomization, we estimate that a unit increase in an individual’s weekly alcohol consumption increases partner’s alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P = 8.20 × 10−6). Furthermore, we find evidence of spousal genotypic concordance for rs1229984, suggesting that spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest some concordance independent of population stratification. Our findings suggest that alcohol behaviour directly influences mate selection.
  • Howe, L. J., Richardson, T. G., Arathimos, R., Alvizi, L., Passos-Bueno, M. R., Stanier, P., Nohr, E., Ludwig, K. U., Mangold, E., Knapp, M., Stergiakouli, E., St Pourcain, B., Smith, G. D., Sandy, J., Relton, C. L., Lewis, S. J., Hemani, G., & Sharp, G. C. (2019). Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate. Epigenomics, 11(2), 133-145. doi:10.2217/epi-2018-0091.

    Abstract

    Aim: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials & methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results & conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.

    Additional information

    Supplementary material
  • Linnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H. and 72 moreLinnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H., Chen, C.-Y., Eibich, P., Fontanillas, P., Gonzalez, J. R., Joshi, P. K., Karhunen, V., Kleinman, A., Levin, R. Z., Lill, C. M., Meddens, G. A., Muntané, G., Sanchez-Roige, S., Van Rooij, F. J., Taskesen, E., Wu, Y., Zhang, F., 23and Me Research Team, eQTLgen Consortium, International Cannabis Consortium, Social Science Genetic Association Consortium, Auton, A., Boardman, J. D., Clark, D. W., Conlin, A., Dolan, C. C., Fischbacher, U., Groenen, P. J. F., Harris, K. M., Hasler, G., Hofman, A., Ikram, M. A., Jain, S., Karlsson, R., Kessler, R. C., Kooyman, M., MacKillop, J., Männikkö, M., Morcillo-Suarez, C., McQueen, M. B., Schmidt, K. M., Smart, M. C., Sutter, M., Thurik, A. R., Uitterlinden, A. G., White, J., De Wit, H., Yang, J., Bertram, L., Boomsma, D. I., Esko, T., Fehr, E., Hinds, D. A., Johannesson, M., Kumari, M., Laibson, D., Magnusson, P. K. E., Meyer, M. N., Navarro, A., Palmer, A. A., Pers, T. H., Posthuma, D., Schunk, D., Stein, M. B., Svento, R., Tiemeier, H., Timmers, P. R. H. J., Turley, P., Ursano, R. J., Wagner, G. G., Wilson, J. F., Gratten, J., Lee, J. J., Cesarini, D., Benjamin, D. J., Koellinger, P. D., & Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245-257. doi:10.1038/s41588-018-0309-3.
  • Middeldorp, C. M., Felix, J. F., Mahajan, A., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Early Growth Genetics (EGG) consortium, & McCarthy, M. I. (2019). The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: Design, results and future prospects. European Journal of Epidemiology, 34(3), 279-300. doi:10.1007/s10654-019-00502-9.

    Abstract

    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  • Tilot, A. K., Vino, A., Kucera, K. S., Carmichael, D. A., Van den Heuvel, L., Den Hoed, J., Sidoroff-Dorso, A. V., Campbell, A., Porteous, D. J., St Pourcain, B., Van Leeuwen, T. M., Ward, J., Rouw, R., Simner, J., & Fisher, S. E. (2019). Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190026. doi:10.1098/rstb.2019.0026.

    Abstract

    Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme–colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging.

    Files private

    Request files
  • Verhoef, E., Demontis, D., Burgess, S., Shapland, C. Y., Dale, P. S., Okbay, A., Neale, B. M., Faraone, S. V., iPSYCH-Broad-PGC ADHD Consortium, Stergiakouli, E., Davey Smith, G., Fisher, S. E., Borglum, A., & St Pourcain, B. (2019). Disentangling polygenic associations between Attention-Deficit/Hyperactivity Disorder, educational attainment, literacy and language. Translational Psychiatry, 9: 35. doi:10.1038/s41398-018-0324-2.

    Abstract

    Interpreting polygenic overlap between ADHD and both literacy-related and language-related impairments is challenging as genetic associations might be influenced by indirectly shared genetic factors. Here, we investigate genetic overlap between polygenic ADHD risk and multiple literacy-related and/or language-related abilities (LRAs), as assessed in UK children (N ≤ 5919), accounting for genetically predictable educational attainment (EA). Genome-wide summary statistics on clinical ADHD and years of schooling were obtained from large consortia (N ≤ 326,041). Our findings show that ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, most consistently with reading-related abilities, and explained ≤1.6% phenotypic variation. These polygenic links were then dissected into both ADHD effects shared with and independent of EA, using multivariable regressions (MVR). Conditional on EA, polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, phonemic awareness and verbal intelligence, but not listening comprehension and non-word repetition. Using conservative ADHD-instruments (P-threshold < 5 × 10−8), this corresponded, for example, to a 0.35 SD decrease in pooled reading performance per log-odds in ADHD-liability (P = 9.2 × 10−5). Using subthreshold ADHD-instruments (P-threshold < 0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds in ADHD risk (P = 1.4 × 10−6), although the predictive accuracy increased. However, polygenic ADHD-effects shared with EA were of equal strength and at least equal magnitude compared to those independent of EA, for all LRAs studied, and detectable using subthreshold instruments. Thus, ADHD-related polygenic links with LRAs are to a large extent due to shared genetic effects with EA, although there is evidence for an ADHD-specific association profile, independent of EA, that primarily involves literacy-related impairments.

    Additional information

    41398_2018_324_MOESM1_ESM.docx
  • Freathy, R. M., Mook-Kanamori, D. O., Sovio, U., Prokopenko, I., Timpson, N. J., Berry, D. J., Warrington, N. M., Widen, E., Hottenga, J. J., Kaakinen, M., Lange, L. A., Bradfield, J. P., Kerkhof, M., Marsh, J. A., Mägi, R., Chen, C.-M., Lyon, H. N., Kirin, M., Adair, L. S., Aulchenko, Y. S. and 64 moreFreathy, R. M., Mook-Kanamori, D. O., Sovio, U., Prokopenko, I., Timpson, N. J., Berry, D. J., Warrington, N. M., Widen, E., Hottenga, J. J., Kaakinen, M., Lange, L. A., Bradfield, J. P., Kerkhof, M., Marsh, J. A., Mägi, R., Chen, C.-M., Lyon, H. N., Kirin, M., Adair, L. S., Aulchenko, Y. S., Bennett, A. J., Borja, J. B., Bouatia-Naji, N., Charoen, P., Coin, L. J. M., Cousminer, D. L., de Geus, E. J. C., Deloukas, P., Elliott, P., Evans, D. M., Froguel, P., Glaser, B., Groves, C. J., Hartikainen, A.-L., Hassanali, N., Hirschhorn, J. N., Hofman, A., Holly, J. M. P., Hyppönen, E., Kanoni, S., Knight, B. A., Laitinen, J., Lindgren, C. M., McArdle, W. L., O'Reilly, P. F., Pennell, C. E., Postma, D. S., Pouta, A., Ramasamy, A., Rayner, N. W., Ring, S. M., Rivadeneira, F., Shields, B. M., Strachan, D. P., Surakka, I., Taanila, A., Tiesler, C., Uitterlinden, A. G., van Duijn, C. M., Wijga, A. H., Willemsen, G., Zhang, H., Zhao, J., Wilson, J. F., Steegers, E. A. P., Hattersley, A. T., Eriksson, J. G., Peltonen, L., Mohlke, K. L., Grant, S. F. A., Hakonarson, H., Koppelman, G. H., Dedoussis, G. V., Heinrich, J., Gillman, M. W., Palmer, L. J., Frayling, T. M., Boomsma, D. I., Davey Smith, G., Power, C., Jaddoe, V. W. V., Jarvelin, M.-R., McCarthy, M. I., The Genetic Investigation of ANthropometric Traits (GIANT) Consortium, The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), The Wellcome Trust Case Control Consortium (WTCCC), & the Early Growth Genetics (EGG) Consortium (2010). Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nature Genetics, 42(5), 430-435. doi:10.1038/ng.567.

    Abstract

    To identify genetic variants associated with birth weight, we meta-analyzed six genome-wide association (GWA) studies (n = 10,623 Europeans from pregnancy/birth cohorts) and followed up two lead signals in 13 replication studies (n = 27,591). rs900400 near LEKR1 and CCNL1 (P = 2 x 10(-35)) and rs9883204 in ADCY5 (P = 7 x 10(-15)) were robustly associated with birth weight. Correlated SNPs in ADCY5 were recently implicated in regulation of glucose levels and susceptibility to type 2 diabetes, providing evidence that the well-described association between lower birth weight and subsequent type 2 diabetes has a genetic component, distinct from the proposed role of programming by maternal nutrition. Using data from both SNPs, we found that the 9% of Europeans carrying four birth weight-lowering alleles were, on average, 113 g (95% CI 89-137 g) lighter at birth than the 24% with zero or one alleles (P(trend) = 7 x 10(-30)). The impact on birth weight is similar to that of a mother smoking 4-5 cigarettes per day in the third trimester of pregnancy.
  • Glaser, B., Ades, A. E., Lewis, S., Emmet, P., Lewis, G., Smith, G. D., & Zammit, S. (2010). Perinatal folate-related exposures and risk of psychotic symptoms in the ALSPAC birth cohort. Schizophrenia Research, 120, 177-183. doi:10.1016/j.schres.2010.03.006.

    Abstract

    BACKGROUND: It is unclear to what extent non-clinical psychotic experiences during childhood and adolescence share underlying aetiological mechanisms with schizophrenia. One candidate mechanism for schizophrenia involves the epigenetic status of the developing fetus, which depends on the internal folate-status of mother and child. Our study examines the relationships between multiple determinants of perinatal folate-status and development of psychotic experiences in adolescence. METHODS: Study participants were up to 5344 mother-child pairs from the Avon Longitudinal Study of Parents and their Children, UK, with information on maternal and/or child MTHFR C677T genotype, maternal folate intake (supplementation at 18/32- weeks gestation; dietary intake at 32- weeks gestation) and psychosis-like symptoms (PLIKS) for children assessed at age 12. RESULTS: Nominal evidence was observed that maternal folate supplementation at 18 weeks increased the odds of PLIKS in children (odds ratio(OR)=1.34; 95%-CI:[1.00;1.76]) and, consistent with this, that children of MTHFR C667T TT homozygous mothers had decreased odds of PLIKS (OR=0.72; 95%CI:[0.50;1.02]; recessive model) with strongest effects in boys (OR=0.44, 95%-CI:[0.22;0.79]; sex-specific p=0.029). None of the reported effects remained significant when corrected for multiple testing. CONCLUSIONS: Overall, this study found no support that maternal/child MTHFR C677T genotype and maternal folate intake during pregnancy contribute to common aetiological pathways that are shared between schizophrenia and non-clinical psychotic symptoms in adolescents, assuming that decreased folate-status increases schizophrenia risk.
  • Glaser, B., Shelton, K. H., & van den Bree, M. B. M. (2010). The moderating role of close friends in the relationship between conduct problems and adolescent substance use. Journal of Adolescent Health, 47(1), 35-42. doi:10.1016/j.jadohealth.2009.12.022.

    Abstract

    PURPOSE: Conduct problems and peer effects are among the strongest risk factors for adolescent substance use and problem use. However, it is unclear to what extent the effects of conduct problems and peer behavior interact, and whether adolescents' capacity to refuse the offer of substances may moderate such links. This study was conducted to examine relationships between conduct problems, close friends' substance use, and refusal assertiveness with adolescents' alcohol use problems, tobacco, and marijuana use. METHODS: We studied a population-based sample of 1,237 individuals from the Cardiff Study of All Wales and North West of England Twins aged 11-18 years. Adolescent and mother-reported information was obtained. Statistical analyses included cross-sectional and prospective logistic regression models and family-based permutations. RESULTS: Conduct problems and close friends' substance use were associated with increased adolescents' substance use, whereas refusal assertiveness was associated with lower use of cigarettes, alcohol, and marijuana. Peer substance use moderated the relationship between conduct problems and alcohol use problems, such that conduct problems were only related to increased risk for alcohol use problems in the presence of substance-using friends. This effect was found in both cross-sectional and prospective analyses and confirmed using the permutation approach. CONCLUSIONS: Reduced opportunities for interaction with alcohol-using peers may lower the risk of alcohol use problems in adolescents with conduct problems.
  • Heid, I. M., Henneman, P., Hicks, A., Coassin, S., Winkler, T., Aulchenko, Y. S., Fuchsberger, C., Song, K., Hivert, M.-F., Waterworth, D. M., Timpson, N. J., Richards, J. B., Perry, J. R. B., Tanaka, T., Amin, N., Kollerits, B., Pichler, I., Oostra, B. A., Thorand, B., Frants, R. R. and 22 moreHeid, I. M., Henneman, P., Hicks, A., Coassin, S., Winkler, T., Aulchenko, Y. S., Fuchsberger, C., Song, K., Hivert, M.-F., Waterworth, D. M., Timpson, N. J., Richards, J. B., Perry, J. R. B., Tanaka, T., Amin, N., Kollerits, B., Pichler, I., Oostra, B. A., Thorand, B., Frants, R. R., Illig, T., Dupuis, J., Glaser, B., Spector, T., Guralnik, J., Egan, J. M., Florez, J. C., Evans, D. M., Soranzo, N., Bandinelli, S., Carlson, O. D., Frayling, T. M., Burling, K., Smith, G. D., Mooser, V., Ferrucci, L., Meigs, J. B., Vollenweider, P., Dijk, K. W. v., Pramstaller, P., Kronenberg, F., & van Duijn, C. M. (2010). Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals. Atherosclerosis, 208(2), 412-420. doi:10.1016/j.atherosclerosis.2009.11.035.

    Abstract

    OBJECTIVE: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. METHODS: We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 x 10(-4) for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. RESULTS: The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3 x 10(-24)) as well as in both women- and men-specific analyses (p=8.7 x 10(-17) and p=2.5 x 10(-11), respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). CONCLUSIONS: We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin.
  • Medland, S. E., Zayats, T., Glaser, B., Nyholt, D. R., Gordon, S. D., Wright, M. J., Montgomery, G. W., Campbell, M. J., Henders, A. K., Timpson, N. J., Peltonen, L., Wolke, D., Ring, S. M., Deloukas, P., Martin, N. G., Smith, G. D., & Evans, D. M. (2010). A variant in LIN28B is associated with 2D:4D finger-length ratio, a putative retrospective biomarker of prenatal testosterone exposure. American Journal of Human Genetics, 86(4), 519-525. doi:10.1016/j.ajhg.2010.02.017.

    Abstract

    The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 x 10(-8)) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 x 10(-6)). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure.
  • Pillas, D., Hoggart, C. J., Evans, D. M., O'Reilly, P. F., Sipilä, K., Lähdesmäki, R., Millwood, I. Y., Kaakinen, M., Netuveli, G., Blane, D., Charoen, P., Sovio, U., Pouta, A., Freimer, N., Hartikainen, A.-L., Laitinen, J., Vaara, S., Glaser, B., Crawford, P., Timpson, N. J. and 10 morePillas, D., Hoggart, C. J., Evans, D. M., O'Reilly, P. F., Sipilä, K., Lähdesmäki, R., Millwood, I. Y., Kaakinen, M., Netuveli, G., Blane, D., Charoen, P., Sovio, U., Pouta, A., Freimer, N., Hartikainen, A.-L., Laitinen, J., Vaara, S., Glaser, B., Crawford, P., Timpson, N. J., Ring, S. M., Deng, G., Zhang, W., McCarthy, M. I., Deloukas, P., Peltonen, L., Elliott, P., Coin, L. J. M., Smith, G. D., & Jarvelin, M.-R. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genetics, 6(2): e1000856. doi:10.1371/journal.pgen.1000856.

    Abstract

    Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<}5x10(-8), and 5 with suggestive association (P{<5x10(-6)). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
  • St Pourcain, B., Wang, K., Glessner, J. T., Golding, J., Steer, C., Ring, S. M., Skuse, D. H., Grant, S. F. A., Hakonarson, H., & Davey Smith, G. (2010). Association Between a High-Risk Autism Locus on 5p14 and Social Communication Spectrum Phenotypes in the General Population. American Journal of Psychiatry, 167(11), 1364-1372. doi:10.1176/appi.ajp.2010.09121789.

    Abstract

    Objective: Recent genome-wide analysis identified a genetic variant on 5p14.1 (rs4307059), which is associated with risk for autism spectrum disorder. This study investigated whether rs4307059 also operates as a quantitative trait locus underlying a broader autism phenotype in the general population, focusing specifically on the social communication aspect of the spectrum. Method: Study participants were 7,313 children from the Avon Longitudinal Study of Parents and Children. Single-trait and joint-trait genotype associations were investigated for 29 measures related to language and communication, verbal intelligence, social interaction, and behavioral adjustment, assessed between ages 3 and 12 years. Analyses were performed in one-sided or directed mode and adjusted for multiple testing, trait interrelatedness, and random genotype dropout. Results: Single phenotype analyses showed that an increased load of rs4307059 risk allele is associated with stereotyped conversation and lower pragmatic communication skills, as measured by the Children's Communication Checklist (at a mean age of 9.7 years). In addition a trend toward a higher frequency of identification of special educational needs (at a mean age of 11.8 years) was observed. Variation at rs4307059 was also associated with the phenotypic profile of studied traits. This joint signal was fully explained neither by single-trait associations nor by overall behavioral adjustment problems but suggested a combined effect, which manifested through multiple sub-threshold social, communicative, and cognitive impairments. Conclusions: Our results suggest that common variation at 5p14.1 is associated with social communication spectrum phenotypes in the general population and support the role of rs4307059 as a quantitative trait locus for autism spectrum disorder.
  • Ruano, D., Abecasis, G. R., Glaser, B., Lips, E. S., Cornelisse, L. N., de Jong, A. P. H., Evans, D. M., Davey Smith, G., Timpson, N. J., Smit, A. B., Heutink, P., Verhage, M., & Posthuma, D. (2010). Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. American Journal of Human Genetics, 86(2), 113-125. doi:10.1016/j.ajhg.2009.12.006.

    Abstract

    Although cognitive ability is a highly heritable complex trait, only a few genes have been identified, explaining relatively low proportions of the observed trait variation. This implies that hundreds of genes of small effect may be of importance for cognitive ability. We applied an innovative method in which we tested for the effect of groups of genes defined according to cellular function (functional gene group analysis). Using an initial sample of 627 subjects, this functional gene group analysis detected that synaptic heterotrimeric guanine nucleotide binding proteins (G proteins) play an important role in cognitive ability (P(EMP) = 1.9 x 10(-4)). The association with heterotrimeric G proteins was validated in an independent population sample of 1507 subjects. Heterotrimeric G proteins are central relay factors between the activation of plasma membrane receptors by extracellular ligands and the cellular responses that these induce, and they can be considered a point of convergence, or a "signaling bottleneck." Although alterations in synaptic signaling processes may not be the exclusive explanation for the association of heterotrimeric G proteins with cognitive ability, such alterations may prominently affect the properties of neuronal networks in the brain in such a manner that impaired cognitive ability and lower intelligence are observed. The reported association of synaptic heterotrimeric G proteins with cognitive ability clearly points to a new direction in the study of the genetic basis of cognitive ability.

Share this page