Displaying 1 - 23 of 23
-
Doust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F. and 7 moreDoust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F., Smith, S. D., Wright, M. J., Martin, N. G., Auton, A., Bates, T. C., Fisher, S. E., & Luciano, M. (2022). Discovery of 42 genome-wide significant loci associated with dyslexia. Nature Genetics. doi:10.1038/s41588-022-01192-y.
Abstract
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia. -
Eising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C. and 70 moreEising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C., Bernard, M., Blokland, K., Børglum, A. D., Bourgeron, T., Brandeis, D., Ceroni, F., Dale, P. S., Landerl, K., Lyytinen, H., De Jong, P. F., DeFries, J. C., Demontis, D., Feng, Y., Gordon, S. D., Guger, S. L., Hayiou-Thomas, M. E., Hernández-Cabrera, J. A., Hottenga, J.-J., Hulme, C., Kerr, E. N., Koomar, T., Lovett, M. W., Martin, N. G., Martinelli, A., Maurer, U., Michaelson, J. J., Moll, K., Monaco, A. P., Morgan, A. T., Nöthen, M. M., Pausova, Z., Pennell, C. E., Pennington, B. F., Price, K. M., Rajagopal, V. M., Ramus, F., Richer, L., Simpson, N. H., Smith, S., Snowling, M. J., Stein, J., Strug, L. J., Talcott, J. B., Tiemeier, H., Van de Schroeff, M. M. P., Verhoef, E., Watkins, K. E., Wilkinson, M., Wright, M. J., Barr, C. L., Boomsma, D. I., Carreiras, M., Franken, M.-C.-J., Gruen, J. R., Luciano, M., Müller-Myhsok, B., Newbury, D. F., Olson, R. K., Paracchini, S., Paus, T., Plomin, R., Schulte-Körne, G., Reilly, S., Tomblin, J. B., Van Bergen, E., Whitehouse, A. J., Willcutt, E. G., St Pourcain, B., Francks, C., & Fisher, S. E. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences of the United States of America, 119(35): e2202764119. doi:10.1073/pnas.2202764119.
Abstract
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10−8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits. -
Neumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N. and 41 moreNeumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N., Tiesler, C. M. T., Wang, C., Wills, A., Zhou, A., Alemany, S., Bisgaard, H., Bønnelykke, K., Davies, G. E., Hakulinen, C., Henders, A. K., Hyppönen, E., Stokholm, J., Bartels, M., Hottenga, J.-J., Heinrich, J., Hewitt, J., Keltikangas-Järvinen, L., Korhonen, T., Kaprio, J., Lahti, J., Lahti-Pulkkinen, M., Lehtimäki, T., Middeldorp, C. M., Najman, J. M., Pennell, C., Power, C., Oldehinkel, A. J., Plomin, R., Räikkönen, K., Raitakari, O. T., Rimfeld, K., Sass, L., Snieder, H., Standl, M., Sunyer, J., Williams, G. M., Bakermans-Kranenburg, M. J., Boomsma, D. I., Van IJzendoorn, M. H., Hartman, C. A., & Tiemeier, H. (2022). A genome-wide association study of total child psychiatric problems scores. PLOS ONE, 17(8): e0273116. doi:10.1371/journal.pone.0273116.
Abstract
Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psychiatric problem score also showed at least a moderate genetic correlation with intelligence, educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits.Additional information
Full summary results -
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J. and 18 moreOkbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J., Freese, J., Herd, P., 23andMe Research Team, Social Science Genetic Association Consortium, Watson, C., Jala, J., Conley, D., Koellinger, P. D., Johannesson, M., Laibson, D., Meyer, M. N., Lee, J. J., Kong, A., Yengo, L., Cesarini, D., Turley, P., Visscher, P. M., Beauchamp, J. P., Benjamin, D. J., & Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437-449. doi:10.1038/s41588-022-01016-z.
Abstract
We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12–16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI’s magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.Additional information
supplementary information -
Price, K. M., Wigg, K. G., Eising, E., Feng, Y., Blokland, K., Wilkinson, M., Kerr, E. N., Guger, S. L., Quantitative Trait Working Group of the GenLang Consortium, Fisher, S. E., Lovett, M. W., Strug, L. J., & Barr, C. L. (2022). Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities. Translational Psychiatry, 12: 495. doi:10.1038/s41398-022-02250-z.
Abstract
Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations. -
Schlag, F., Allegrini, A. G., Buitelaar, J., Verhoef, E., Van Donkelaar, M. M. J., Plomin, R., Rimfeld, K., Fisher, S. E., & St Pourcain, B. (2022). Polygenic risk for mental disorder reveals distinct association profiles across social behaviour in the general population. Molecular Psychiatry, 27, 1588-1598. doi:10.1038/s41380-021-01419-0.
Abstract
Many mental health conditions present a spectrum of social difficulties that overlaps with social behaviour in the general population including shared but little characterised genetic links. Here, we systematically investigate heterogeneity in shared genetic liabilities with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), bipolar disorder (BP), major depression (MD) and schizophrenia across a spectrum of different social symptoms. Longitudinally assessed low-prosociality and peer-problem scores in two UK population-based cohorts (4–17 years; parent- and teacher-reports; Avon Longitudinal Study of Parents and Children(ALSPAC): N ≤ 6,174; Twins Early Development Study(TEDS): N ≤ 7,112) were regressed on polygenic risk scores for disorder, as informed by genome-wide summary statistics from large consortia, using negative binomial regression models. Across ALSPAC and TEDS, we replicated univariate polygenic associations between social behaviour and risk for ADHD, MD and schizophrenia. Modelling variation in univariate genetic effects jointly using random-effect meta-regression revealed evidence for polygenic links between social behaviour and ADHD, ASD, MD, and schizophrenia risk, but not BP. Differences in age, reporter and social trait captured 45–88% in univariate effect variation. Cross-disorder adjusted analyses demonstrated that age-related heterogeneity in univariate effects is shared across mental health conditions, while reporter- and social trait-specific heterogeneity captures disorder-specific profiles. In particular, ADHD, MD, and ASD polygenic risk were more strongly linked to peer problems than low prosociality, while schizophrenia was associated with low prosociality only. The identified association profiles suggest differences in the social genetic architecture across mental disorders when investigating polygenic overlap with population-based social symptoms spanning 13 years of child and adolescent development. -
Vogelezang, S., Bradfield, J. P., the Early Growth Genetics Consortium, Grant, S. F. A., Felix, J. F., & Jaddoe, V. W. V. (2022). Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes. BMC Medical Genomics, 15: 124. doi:10.1186/s12920-022-01281-1.
Abstract
Background
Head circumference is associated with intelligence and tracks from childhood into adulthood.
Methods
We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age.
Results
Seven loci reached genome-wide significance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes.
Conclusions
The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics. -
Benyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J. and 23 moreBenyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J., Harris, S. E., Liewald, D. C., Scheet, P., Xiao, X., Hudziak, J. J., de Geus, E. J. C., Jaddoe, V. W. V., Starr, J. M., Verhulst, F. C., Pennell, C., Tiemeier, H., Iacono, W. G., Palmer, L. J., Montgomery, G. W., Martin, N. G., Boomsma, D. I., Posthuma, D., McGue, M., Wright, M. J., Davey Smith, G., Deary, I. J., Plomin, R., & Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253-258. doi:10.1038/mp.2012.184.
Abstract
Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6–18 years) from 17 989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22–46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10−15, 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10−5), 3.5% (P=10−3) and 0.5% (P=6 × 10−5) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.Additional information
http://www.nature.com/mp/journal/v19/n2/suppinfo/mp2012184s1.html?url=/mp/journ… -
Bolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E. and 37 moreBolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E., Widen, E., Palotie, A., Eriksson, J. G., Kaakinen, M., Järvelin, M.-R., Timpson, N. J., Davey Smith, G., Ring, S. M., Evans, D. M., St Pourcain, B., Tanaka, T., Milaneschi, Y., Bandinelli, S., Ferrucci, L., van der Harst, P., Rosmalen, J. G. M., Bakker, S. J. L., Verweij, N., Dullaart, R. P. F., Mahajan, A., Lindgren, C. M., Morris, A., Lind, L., Ingelsson, E., Anderson, L. N., Pennell, C. E., Lye, S. J., Matthews, S. G., Eriksson, J., Mellstrom, D., Ohlsson, C., Price, J. F., Strachan, M. W. J., Reynolds, R. M., Tiemeier, H., Walker, B. R., & CORtisol NETwork (CORNET) Consortium (2014). Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin. PLoS Genetics, 10(7): e1004474. doi:10.1371/journal.pgen.1004474.
Abstract
Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases. -
Eaves, L. J., St Pourcain, B., Smith, G. D., York, T. P., & Evans, D. M. (2014). Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis (“M-GCTA”). Behavior Genetics, 44(5), 445-455. doi:10.1007/s10519-014-9666-6.
Abstract
Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from ~4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered. -
Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
-
Kemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L. and 2 moreKemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L., Ohlsson, C., & Tobias, J. H. (2014). Does Bone Resorption Stimulate Periosteal Expansion? A Cross-Sectional Analysis of β-C-telopeptides of Type I Collagen (CTX), Genetic Markers of the RANKL Pathway, and Periosteal Circumference as Measured by pQCT. Journal of Bone and Mineral Research, 29(4), 1015-1024. doi:10.1002/jbmr.2093.
Abstract
We hypothesized that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodeling such as cortical bone mineral density (BMDC ). CTX and mid-tibial peripheral quantitative computed tomography (pQCT) scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass, and height. CTX was positively related to PC (β=0.19 [0.13, 0.24]) (coefficient=SD change per SD increase in CTX, 95% confidence interval)] but inversely associated with BMDC (β=-0.46 [-0.52,-0.40]) and cortical thickness [β=-0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) (β=0.09 [0.03, 0.14]). To examine the causal nature of this relationship, we then analyzed whether single-nucleotide polymorphisms (SNPs) within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding receptor activator of NF-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (p<}0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938), and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (p{<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.Additional information
http://onlinelibrary.wiley.com/doi/10.1002/jbmr.2093/suppinfo -
Kemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K. and 13 moreKemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K., Koller, D. L., Econs, M. J., Williams, F. M. K., Foroud, T., Zillikens, M. C., Ohlsson, C., Hofman, A., Uitterlinden, A. G., Davey Smith, G., Jaddoe, V. W. V., Tobias, J. H., Rivadeneira, F., & Evans, D. M. (2014). Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genetics, 10(6): e1004423. doi:10.1371/journal.pgen.1004423.
Abstract
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.Additional information
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004423#s5 -
St Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L. and 12 moreSt Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L., Price, T. S., Dale, P. S., Pillas, D., Yliherva, A., Rodriguez, A., Golding, J., Jaddoe, V. W., Jarvelin, M.-R., Plomin, R., Pennell, C. E., Tiemeier, H., & Davey Smith, G. (2014). Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nature Communications, 5: 4831. doi:10.1038/ncomms5831.
-
St Pourcain, B., Skuse, D. H., Mandy, W. P., Wang, K., Hakonarson, H., Timpson, N. J., Evans, D. M., Kemp, J. P., Ring, S. M., McArdle, W. L., Golding, J., & Smith, G. D. (2014). Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Molecular Autism, 5: 18. doi:10.1186/2040-2392-5-18.
Abstract
Background Social-communication abilities are heritable traits, and their impairments overlap with the autism continuum. To characterise the genetic architecture of social-communication difficulties developmentally and identify genetic links with the autistic dimension, we conducted a genome-wide screen of social-communication problems at multiple time-points during childhood and adolescence. Methods Social-communication difficulties were ascertained at ages 8, 11, 14 and 17 years in a UK population-based birth cohort (Avon Longitudinal Study of Parents and Children; N ≤ 5,628) using mother-reported Social Communication Disorder Checklist scores. Genome-wide Complex Trait Analysis (GCTA) was conducted for all phenotypes. The time-points with the highest GCTA heritability were subsequently analysed for single SNP association genome-wide. Type I error in the presence of measurement relatedness and the likelihood of observing SNP signals near known autism susceptibility loci (co-location) were assessed via large-scale, genome-wide permutations. Association signals (P ≤ 10−5) were also followed up in Autism Genetic Resource Exchange pedigrees (N = 793) and the Autism Case Control cohort (Ncases/Ncontrols = 1,204/6,491). Results GCTA heritability was strongest in childhood (h2(8 years) = 0.24) and especially in later adolescence (h2(17 years) = 0.45), with a marked drop during early to middle adolescence (h2(11 years) = 0.16 and h2(14 years) = 0.08). Genome-wide screens at ages 8 and 17 years identified for the latter time-point evidence for association at 3p22.2 near SCN11A (rs4453791, P = 9.3 × 10−9; genome-wide empirical P = 0.011) and suggestive evidence at 20p12.3 at PLCB1 (rs3761168, P = 7.9 × 10−8; genome-wide empirical P = 0.085). None of these signals contributed to risk for autism. However, the co-location of population-based signals and autism susceptibility loci harbouring rare mutations, such as PLCB1, is unlikely to be due to chance (genome-wide empirical Pco-location = 0.007). Conclusions Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum.Additional information
13229_2013_113_MOESM1_ESM.docx -
Stergiakouli, E., Gaillard, R., Tavaré, J. M., Balthasar, N., Loos, R. J., Taal, H. R., Evans, D. M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A. G., Kemp, J. P., Hofman, A., Ring, S. M., Cole, T. J., Jaddoe, V. W. V., Davey Smith, G., & Timpson, N. J. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity, 22(10), 2252-2259. doi:10.1002/oby.20840.
Abstract
OBJECTIVE: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children. METHODS: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was performed. RESULTS: GWAS based on BMI[x] yielded marked differences in genomewide results profile. SNPs in ADCY3 (adenylate cyclase 3) were associated at genome-wide significance level (rs11676272 (0.28 kg/m(3.1) change per allele G (0.19, 0.38), P = 6 × 10(-9) ). In contrast, they showed marginal evidence of association with conventional BMI [rs11676272 (0.25 kg/m(2) (0.15, 0.35), P = 6 × 10(-7) )]. Results were replicated in an independent sample, the Generation R study. CONCLUSIONS: Analysis of BMI[x] showed differences to that of conventional BMI. The association signal at ADCY3 appeared to be driven by a missense variant and it was strongly correlated with expression of this gene. Our work highlights the importance of well understood phenotype use (and the danger of convention) in characterising genetic contributions to complex traits.Additional information
oby20840-sup-0001-suppinfo.docx -
Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J., Koellinger, P. D., Cesarini, D., Smith, G. D., Timpson, N. J., & Consortium}, {. S. G. A. (2014). Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children. PLoS ONE, 9(7): e100248. doi:10.1371/journal.pone.0100248.
Abstract
Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10-10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10-04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment.Additional information
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100248#s5 -
Guggenheim, J. A., Northstone, K., McMahon, G., Ness, A. R., Deere, K., Mattocks, C., St Pourcain, B., & Williams, C. (2012). Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Investigative Ophthalmology and Visual Science, 53(6), 2856-2865. doi:10.1167/iovs.11-9091.
Abstract
PURPOSE: Time spent in "sports/outdoor activity" has shown a negative association with incident myopia during childhood. We investigated the association of incident myopia with time spent outdoors and physical activity separately. METHODS: Participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) were assessed by noncycloplegic autorefraction at ages 7, 10, 11, 12, and 15 years, and classified as myopic (≤-1 diopters) or as emmetropic/hyperopic (≥-0.25 diopters) at each visit (N = 4,837-7,747). Physical activity at age 11 years was measured objectively using an accelerometer, worn for 1 week. Time spent outdoors was assessed via a parental questionnaire administered when children were aged 8-9 years. Variables associated with incident myopia were examined using Cox regression. RESULTS: In analyses using all available data, both time spent outdoors and physical activity were associated with incident myopia, with time outdoors having the larger effect. The results were similar for analyses restricted to children classified as either nonmyopic or emmetropic/hyperopic at age 11 years. Thus, for children nonmyopic at age 11, the hazard ratio (95% confidence interval, CI) for incident myopia was 0.66 (0.47-0.93) for a high versus low amount of time spent outdoors, and 0.87 (0.76-0.99) per unit standard deviation above average increase in moderate/vigorous physical activity. CONCLUSION: Time spent outdoors was predictive of incident myopia independently of physical activity level. The greater association observed for time outdoors suggests that the previously reported link between "sports/outdoor activity" and incident myopia is due mainly to its capture of information relating to time outdoors rather than physical activity.Additional information
http://iovs.arvojournals.org/article.aspx?articleid=2127681#90733836 -
Ikram, M. A., Fornage, M., Smith, A. V., Seshadri, S., Schmidt, R., Debette, S., Vrooman, H. A., Sigurdsson, S., Ropele, S., Taal, H. R., Mook-Kanamori, D. O., Coker, L. H., Longstreth, W. T., Niessen, W. J., DeStefano, A. L., Beiser, A., Zijdenbos, A. P., Struchalin, M., Jack, C. R., Rivadeneira, F. and 37 moreIkram, M. A., Fornage, M., Smith, A. V., Seshadri, S., Schmidt, R., Debette, S., Vrooman, H. A., Sigurdsson, S., Ropele, S., Taal, H. R., Mook-Kanamori, D. O., Coker, L. H., Longstreth, W. T., Niessen, W. J., DeStefano, A. L., Beiser, A., Zijdenbos, A. P., Struchalin, M., Jack, C. R., Rivadeneira, F., Uitterlinden, A. G., Knopman, D. S., Hartikainen, A.-L., Pennell, C. E., Thiering, E., Steegers, E. A. P., Hakonarson, H., Heinrich, J., Palmer, L. J., Jarvelin, M.-R., McCarthy, M. I., Grant, S. F. A., St Pourcain, B., Timpson, N. J., Smith, G. D., Sovio, U., Nalls, M. A., Au, R., Hofman, A., Gudnason, H., van der Lugt, A., Harris, T. B., Meeks, W. M., Vernooij, M. W., van Buchem, M. A., Catellier, D., Jaddoe, V. W. V., Gudnason, V., Windham, B. G., Wolf, P. A., van Duijn, C. M., Mosley, T. H., Schmidt, H., Launer, L. J., Breteler, M. M. B., DeCarli, C., Consortiumthe Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, & Early Growth Genetics (EGG) Consortium (2012). Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics, 44(5), 539-544. doi:10.1038/ng.2245.
Abstract
During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 × 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 × 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 × 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 × 10(-3) for 6q22 and 1.2 × 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size. -
Paternoster, L., Zhurov, A., Toma, A., Kemp, J., St Pourcain, B., Timpson, N., McMahon, G., McArdle, W., Ring, S., Smith, G., Richmond, S., & Evans, D. (2012). Genome-wide Association Study of Three-Dimensional Facial Morphology Identifies a Variant in PAX3 Associated with Nasion Position. The American Journal of Human Genetics, 90(3), 478-485. doi:10.1016/j.ajhg.2011.12.021.
Abstract
Craniofacial morphology is highly heritable, but little is known about which genetic variants influence normal facial variation in the general population. We aimed to identify genetic variants associated with normal facial variation in a population-based cohort of 15-year-olds from the Avon Longitudinal Study of Parents and Children. 3D high-resolution images were obtained with two laser scanners, these were merged and aligned, and 22 landmarks were identified and their x, y, and z coordinates used to generate 54 3D distances reflecting facial features. 14 principal components (PCs) were also generated from the landmark locations. We carried out genome-wide association analyses of these distances and PCs in 2,185 adolescents and attempted to replicate any significant associations in a further 1,622 participants. In the discovery analysis no associations were observed with the PCs, but we identified four associations with the distances, and one of these, the association between rs7559271 in PAX3 and the nasion to midendocanthion distance (n-men), was replicated (p = 4 × 10−7). In a combined analysis, each G allele of rs7559271 was associated with an increase in n-men distance of 0.39 mm (p = 4 × 10−16), explaining 1.3% of the variance. Independent associations were observed in both the z (nasion prominence) and y (nasion height) dimensions (p = 9 × 10−9 and p = 9 × 10−10, respectively), suggesting that the locus primarily influences growth in the yz plane. Rare variants in PAX3 are known to cause Waardenburg syndrome, which involves deafness, pigmentary abnormalities, and facial characteristics including a broad nasal bridge. Our findings show that common variants within this gene also influence normal craniofacial development.Additional information
http://www.sciencedirect.com/science/article/pii/S000292971200002X#appd002 -
Relton, C. L., Groom, A., St Pourcain, B., Sayers, A. E., Swan, D. C., Embleton, N. D., Pearce, M. S., Ring, S. M., Northstone, K., Tobias, J. H., Trakalo, J., Ness, A. R., Shaheen, S. O., & Davey Smith, G. (2012). DNA Methylation Patterns in Cord Blood DNA and Body Size in Childhood. PLoS ONE, 7(3): e31821. doi:10.1371/journal.pone.0031821.
Abstract
BACKGROUND: Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood. PRINCIPAL FINDINGS: A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD) age of 12.35 (0.95) years, the upper and lower tertiles of body mass index (BMI) were compared with a mean (SD) BMI difference of 9.86 (2.37) kg/m(2). This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD) age of 9.83 (0.23) years. Twenty-nine differentially expressed genes (>}1.2-fold and p{<10(-4)) were analysed to determine DNA methylation levels at 1-3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5%) genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height) at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, p(Corrected) = 0.017). CONCLUSIONS: DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.Additional information
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031821#s5 -
Scott, R. A., Lagou, V., Welch, R. P., Wheeler, E., Montasser, M. E., Luan, J., Mägi, R., Strawbridge, R. J., Rehnberg, E., Gustafsson, S., Kanoni, S., Rasmussen-Torvik, L. J., Yengo, L., Lecoeur, C., Shungin, D., Sanna, S., Sidore, C., Johnson, P. C. D., Jukema, J. W., Johnson, T. and 195 moreScott, R. A., Lagou, V., Welch, R. P., Wheeler, E., Montasser, M. E., Luan, J., Mägi, R., Strawbridge, R. J., Rehnberg, E., Gustafsson, S., Kanoni, S., Rasmussen-Torvik, L. J., Yengo, L., Lecoeur, C., Shungin, D., Sanna, S., Sidore, C., Johnson, P. C. D., Jukema, J. W., Johnson, T., Mahajan, A., Verweij, N., Thorleifsson, G., Hottenga, J.-J., Shah, S., Smith, A. V., Sennblad, B., Gieger, C., Salo, P., Perola, M., Timpson, N. J., Evans, D. M., St Pourcain, B., Wu, Y., Andrews, J. S., Hui, J., Bielak, L. F., Zhao, W., Horikoshi, M., Navarro, P., Isaacs, A., O'Connell, J. R., Stirrups, K., Vitart, V., Hayward, C., Esko, T., Mihailov, E., Fraser, R. M., Fall, T., Voight, B. F., Raychaudhuri, S., Chen, H., Lindgren, C. M., Morris, A. P., Rayner, N. W., Robertson, N., Rybin, D., Liu, C.-T., Beckmann, J. S., Willems, S. M., Chines, P. S., Jackson, A. U., Kang, H. M., Stringham, H. M., Song, K., Tanaka, T., Peden, J. F., Goel, A., Hicks, A. A., An, P., Müller-Nurasyid, M., Franco-Cereceda, A., Folkersen, L., Marullo, L., Jansen, H., Oldehinkel, A. J., Bruinenberg, M., Pankow, J. S., North, K. E., Forouhi, N. G., Loos, R. J. F., Edkins, S., Varga, T. V., Hallmans, G., Oksa, H., Antonella, M., Nagaraja, R., Trompet, S., Ford, I., Bakker, S. J. L., Kong, A., Kumari, M., Gigante, B., Herder, C., Munroe, P. B., Caulfield, M., Antti, J., Mangino, M., Small, K., Miljkovic, I., Liu, Y., Atalay, M., Kiess, W., James, A. L., Rivadeneira, F., Uitterlinden, A. G., Palmer, C. N. A., Doney, A. S. F., Willemsen, G., Smit, J. H., Campbell, S., Polasek, O., Bonnycastle, L. L., Hercberg, S., Dimitriou, M., Bolton, J. L., Fowkes, G. R., Kovacs, P., Lindström, J., Zemunik, T., Bandinelli, S., Wild, S. H., Basart, H. V., Rathmann, W., Grallert, H., Maerz, W., Kleber, M. E., Boehm, B. O., Peters, A., Pramstaller, P. P., Province, M. A., Borecki, I. B., Hastie, N. D., Rudan, I., Campbell, H., Watkins, H., Farrall, M., Stumvoll, M., Ferrucci, L., Waterworth, D. M., Bergman, R. N., Collins, F. S., Tuomilehto, J., Watanabe, R. M., de Geus, E. J. C., Penninx, B. W., Hofman, A., Oostra, B. A., Psaty, B. M., Vollenweider, P., Wilson, J. F., Wright, A. F., Hovingh, G. K., Metspalu, A., Uusitupa, M., Magnusson, P. K. E., Kyvik, K. O., Kaprio, J., Price, J. F., Dedoussis, G. V., Deloukas, P., Meneton, P., Lind, L., Boehnke, M., Shuldiner, A. R., van Duijn, C. M., Morris, A. D., Toenjes, A., Peyser, P. A., Beilby, J. P., Körner, A., Kuusisto, J., Laakso, M., Bornstein, S. R., Schwarz, P. E. H., Lakka, T. A., Rauramaa, R., Adair, L. S., Smith, G. D., Spector, T. D., Illig, T., de Faire, U., Hamsten, A., Gudnason, V., Kivimaki, M., Hingorani, A., Keinanen-Kiukaanniemi, S. M., Saaristo, T. E., Boomsma, D. I., Stefansson, K., van der Harst, P., Dupuis, J., Pedersen, N. L., Sattar, N., Harris, T. B., Cucca, F., Ripatti, S., Salomaa, V., Mohlke, K. L., Balkau, B., Froguel, P., Pouta, A., Jarvelin, M.-R., Wareham, N. J., Bouatia-Naji, N., McCarthy, M. I., Franks, P. W., Meigs, J. B., Teslovich, T. M., Florez, J. C., Langenberg, C., Ingelsson, E., Prokopenko, I., Barroso, I., & Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium (2012). Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 44(9), 991-1005. doi:10.1038/ng.2385.
Abstract
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.Additional information
http://www.nature.com/ng/journal/v44/n9/full/ng.2385.html#supplementary-informa… -
Taal, H. R., St Pourcain, B., Thiering, E., Das, S., Mook-Kanamori, D. O., Warrington, N. M., Kaakinen, M., Kreiner-Møller, E., Bradfield, J. P., Freathy, R. M., Geller, F., Guxens, M., Cousminer, D. L., Kerkhof, M., Timpson, N. J., Ikram, M. A., Beilin, L. J., Bønnelykke, K., Buxton, J. L., Charoen, P. and 68 moreTaal, H. R., St Pourcain, B., Thiering, E., Das, S., Mook-Kanamori, D. O., Warrington, N. M., Kaakinen, M., Kreiner-Møller, E., Bradfield, J. P., Freathy, R. M., Geller, F., Guxens, M., Cousminer, D. L., Kerkhof, M., Timpson, N. J., Ikram, M. A., Beilin, L. J., Bønnelykke, K., Buxton, J. L., Charoen, P., Chawes, B. L. K., Eriksson, J., Evans, D. M., Hofman, A., Kemp, J. P., Kim, C. E., Klopp, N., Lahti, J., Lye, S. J., McMahon, G., Mentch, F. D., Müller-Nurasyid, M., O'Reilly, P. F., Prokopenko, I., Rivadeneira, F., Steegers, E. A. P., Sunyer, J., Tiesler, C., Yaghootkar, H., Breteler, M. M. B., Decarli, C., Breteler, M. M. B., Debette, S., Fornage, M., Gudnason, V., Launer, L. J., van der Lugt, A., Mosley, T. H., Seshadri, S., Smith, A. V., Vernooij, M. W., Blakemore, A. I. F., Chiavacci, R. M., Feenstra, B., Fernandez-Banet, J., Grant, S. F. A., Hartikainen, A.-L., van der Heijden, A. J., Iñiguez, C., Lathrop, M., McArdle, W. L., Mølgaard, A., Newnham, J. P., Palmer, L. J., Palotie, A., Pouta, A., Ring, S. M., Sovio, U., Standl, M., Uitterlinden, A. G., Wichmann, H.-E., Vissing, N. H., DeCarli, C., van Duijn, C. M., McCarthy, M. I., Koppelman, G. H., Estivill, X., Hattersley, A. T., Melbye, M., Bisgaard, H., Pennell, C. E., Widen, E., Hakonarson, H., Smith, G. D., Heinrich, J., Jarvelin, M.-R., Jaddoe, V. W. V., The Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium, EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, & Early Growth Genetics (EGG) Consortium (2012). Common variants at 12q15 and 12q24 are associated with infant head circumference. Nature Genetics, 44(5), 532-538. doi:10.1038/ng.2238.
Abstract
To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 × 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 × 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height, their effects on infant head circumference were largely independent of height (P = 3.8 × 10(-7) for rs7980687 and P = 1.3 × 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 × 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume, Parkinson's disease and other neurodegenerative diseases, indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.Additional information
http://www.nature.com/ng/journal/v44/n5/full/ng.2238.html#supplementary-informa…
Share this page