Displaying 1 - 15 of 15
-
Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., St Pourcain, B., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). Genetic overlap between schizophrenia and developmental psychopathology: Longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, 43(6), 1197-1207. doi:10.1093/schbul/sbx031.
Abstract
Background: Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Methods: Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Results: Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. Conclusion: By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology. -
Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St Pourcain, B., Munafo, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919-928. doi:10.1017/S0954579416000572.
Abstract
This study sought to identify trajectories of DSM-IV based internalizing (INT) and externalizing (EXT) problem scores across childhood and adolescence and to provide insight into the comorbidity by modeling the co-occurrence of INT and EXT trajectories. INT and EXT were measured repeatedly between age 7 and age 15 years in over 7,000 children and analyzed using growth mixture models. Five trajectories were identified for both INT and EXT, including very low, low, decreasing, and increasing trajectories. In addition, an adolescent onset trajectory was identified for INT and a stable high trajectory was identified for EXT. Multinomial regression showed that similar EXT and INT trajectories were associated. However, the adolescent onset INT trajectory was independent of high EXT trajectories, and persisting EXT was mainly associated with decreasing INT. Sex and early life environmental risk factors predicted EXT and, to a lesser extent, INT trajectories. The association between trajectories indicates the need to consider comorbidity when a child presents with INT or EXT disorders, particularly when symptoms start early. This is less necessary when INT symptoms start at adolescence. Future studies should investigate the etiology of co-occurring INT and EXT and the specific treatment needs of these severely affected children. -
Stergiakouli, E., Martin, J., Hamshere, M. L., Heron, J., St Pourcain, B., Timpson, N. J., Thapar, A., & Smith, G. D. (2017). Association between polygenic risk scores for attention-deficit hyperactivity disorder and educational and cognitive outcomes in the general population. International Journal of Epidemiology, 46(2), 421-428. doi:10.1093/ije/dyw216.
Abstract
Background: Children with a diagnosis of attention-deficit hyperactivity disorder (ADHD) have lower cognitive ability and are at risk of adverse educational outcomes; ADHD genetic risks have been found to predict childhood cognitive ability and other neurodevelopmental traits in the general population; thus genetic risks might plausibly also contribute to cognitive ability later in development and to educational underachievement.
Methods: We generated ADHD polygenic risk scores in the Avon Longitudinal Study of Parents and Children participants (maximum N: 6928 children and 7280 mothers) based on the results of a discovery clinical sample, a genome-wide association study of 727 cases with ADHD diagnosis and 5081 controls. We tested if ADHD polygenic risk scores were associated with educational outcomes and IQ in adolescents and their mothers.
Results: High ADHD polygenic scores in adolescents were associated with worse educational outcomes at Key Stage 3 [national tests conducted at age 13–14 years; β = −1.4 (−2.0 to −0.8), P = 2.3 × 10−6), at General Certificate of Secondary Education exams at age 15–16 years (β = −4.0 (−6.1 to −1.9), P = 1.8 × 10−4], reduced odds of sitting Key Stage 5 examinations at age 16–18 years [odds ratio (OR) = 0.90 (0.88 to 0.97), P = 0.001] and lower IQ scores at age 15.5 [β = −0.8 (−1.2 to −0.4), P = 2.4 × 10−4]. Moreover, maternal ADHD polygenic scores were associated with lower maternal educational achievement [β = −0.09 (−0.10 to −0.06), P = 0.005] and lower maternal IQ [β = −0.6 (−1.2 to −0.1), P = 0.03].
Conclusions: ADHD diagnosis risk alleles impact on functional outcomes in two generations (mother and child) and likely have intergenerational environmental effects. -
Stergiakouli, E., Smith, G. D., Martin, J., Skuse, D. H., Viechtbauer, W., Ring, S. M., Ronald, A., Evans, D. E., Fisher, S. E., Thapar, A., & St Pourcain, B. (2017). Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, 8: 18. doi:10.1186/s13229-017-0131-2.
Abstract
Background: Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and
autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however,
subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD
and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and
cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk.
Methods: Social-communication difficulties (N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and
combined hyperactive-impulsive/inattentive ADHD symptoms (N ≤ 5678, Strengths and Difficulties Questionnaire,
SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary
statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls)
were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between
phenotypes were estimated using genome-wide data.
Results: In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout
development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait rg ≤ 1,
pmin = 3 × 10−4) as those between repeated measures of the same trait (within-trait rg ≤ 0.94, pmin = 7 × 10−4).
Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling
upregulated genes (p-meta = 6.4 × 10−4).
Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles
for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression
R2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during
childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores
were linked to genetic risk for disorder.
Conclusions: In the general population, genetic aetiologies between social-communication difficulties and ADHD
symptoms are shared throughout child and adolescent development and may implicate similar biological pathways
that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked
to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional
trait-disorder relationships. -
Tachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G. and 83 moreTachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G., Männistö, S., Matchan, A., Medina-Gomez, C., Metrustry, S. J., Nag, A., Ntalla, I., Paternoster, L., Rayner, N. W., Sala, C., Scott, W. R., Shihab, H. A., Southam, L., St Pourcain, B., Traglia, M., Trajanoska, K., Zaza, G., Zhang, W., Artigas, M. S., Bansal, N., Benn, M., Chen, Z., Danecek, P., Lin, W.-Y., Locke, A., Luan, J., Manning, A. K., Mulas, A., Sidore, C., Tybjaerg-Hansen, A., Varbo, A., Zoledziewska, M., Finan, C., Hatzikotoulas, K., Hendricks, A. E., Kemp, J. P., Moayyeri, A., Panoutsopoulou, K., Szpak, M., Wilson, S. G., Boehnke, M., Cucca, F., Di Angelantonio, E., Langenberg, C., Lindgren, C., McCarthy, M. I., Morris, A. P., Nordestgaard, B. G., Scott, R. A., Tobin, M. D., Wareham, N. J., Burton, P., Chambers, J. C., Smith, G. D., Dedoussis, G., Felix, J. F., Franco, O. H., Gambaro, G., Gasparini, P., Hammond, C. J., Hofman, A., Jaddoe, V. W. V., Kleber, M., Kooner, J. S., Perola, M., Relton, C., Ring, S. M., Rivadeneira, F., Salomaa, V., Spector, T. D., Stegle, O., Toniolo, D., Uitterlinden, A. G., Barroso, I., Greenwood, C. M. T., Perry, J. R. B., Walker, B. R., Butterworth, A. S., Xue, Y., Durbin, R., Small, K. S., Soranzo, N., Timpson, N. J., & Zeggini, E. (2017). Whole-Genome Sequencing coupled to imputation discovers genetic signals for anthropometric traits. The American Journal of Human Genetics, 100(6), 865-884. doi:10.1016/j.ajhg.2017.04.014.
Abstract
Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.Additional information
http://www.sciencedirect.com/science/article/pii/S0002929717301593#appd002 -
Ho, Y. Y. W., Evans, D. M., Montgomery, G. W., Henders, A. K., Kemp, J. P., Timpson, N. J., St Pourcain, B., Heath, A. C., Madden, P. A. F., Loesch, D. Z., McNevin, D., Daniel, R., Davey-Smith, G., Martin, N. G., & Medland, S. E. (2016). Common genetic variants influence whorls in fingerprint patterns. Journal of Investigative Dermatology, 136(4), 859-862. doi:10.1016/j.jid.2015.10.062.
-
Fan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y. and 17 moreFan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y., Ding, X., Wojciechowski, R., Young, T. L., Parssinen, O., Oexle, K., Pfeiffer, N., Bailey-Wilson, J. E., Paterson, A. D., Klaver, C. C. W., Plomin, R., Hammond, C. J., Mackey, D. A., He, M. G., Saw, S. M., Williams, C., Guggenheim, J. A., & Cream, C. (2016). Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 6: 25853. doi:10.1038/srep25853.
Abstract
Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Additional information
srep25853-s1.pdf -
Fan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C. and 83 moreFan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C., Miyake, M., Hewitt, A. W., Guo, X., Mazur, J., Huffman, J. E., Williams, K. M., Polasek, O., Campbell, H., Rudan, I., Vatavuk, Z., Wilson, J. F., Joshi, P. K., McMahon, G., St Pourcain, B., Evans, D. M., Simpson, C. L., Schwantes-An, T.-H., Igo, R. P., Mirshahi, A., Cougnard-Gregoire, A., Bellenguez, C., Blettner, M., Raitakari, O., Kähönen, M., Seppälä, I., Zeller, T., Meitinger, T., Ried, J. S., Gieger, C., Portas, L., Van Leeuwen, E. M., Amin, N., Uitterlinden, A. G., Rivadeneira, F., Hofman, A., Vingerling, J. R., Wang, Y. X., Wang, X., Boh, E.-T.-H., Ikram, M. K., Sabanayagam, C., Gupta, P., Tan, V., Zhou, L., Ho, C. E., Lim, W., Beuerman, R. W., Siantar, R., Tai, E.-S., Vithana, E., Mihailov, E., Khor, C.-C., Hayward, C., Luben, R. N., Foster, P. J., Klein, B. E., Klein, R., Wong, H.-S., Mitchell, P., Metspalu, A., Aung, T., Young, T. L., He, M., Pärssinen, O., Van Duijn, C. M., Wang, J. J., Williams, C., Jonas, J. B., Teo, Y.-Y., Mackey, D. A., Oexle, K., Yoshimura, N., Paterson, A. D., Pfeiffer, N., Wong, T.-Y., Baird, P. N., Stambolian, D., Bailey-Wilson, J. E., Cheng, C.-Y., Hammond, C. J., Klaver, C. C., Saw, S.-M., & Consortium for Refractive Error and Myopia (CREAM) (2016). Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 7: 11008. doi:10.1038/ncomms11008.
Abstract
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopiaAdditional information
Fan_etal_2016sup.pdf -
Hugh-Jones, D., Verweij, K. J. H., St Pourcain, B., & Abdellaoui, A. (2016). Assortative mating on educational attainment leads to genetic spousal resemblance for causal alleles. Intelligence, 59, 103-108. doi:10.1016/j.intell.2016.08.005.
Abstract
We examined whether assortative mating for educational attainment (“like marries like”) can be detected in the genomes of ~ 1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational attainment increases the genetic variance and heritability of the trait in the population, which may increase social inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is indicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23, p < 2 × 10− 16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p = 4 × 10− 8 and r = 0.19, p = 2 × 10− 14, for prediction from males to females and vice versa, respectively), and are themselves significantly correlated between spouses (r = 0.11, p = 7 × 10− 6). Our findings provide molecular genetic evidence for genetic assortative mating on education in the UK -
Middeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J. and 31 moreMiddeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J., Hudziak, J. J., Jugessur, A., Kemp, J. P., Krapohl, E., Martin, N. G., Murcia, M., Myhre, R., Ormel, J., Ring, S. M., Standl, M., Stergiakouli, E., Stoltenberg, C., Thiering, E., Timpson, N. J., Trzaskowski, M., van der Most, P. J., Wang, C., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Psychiatric Genomics Consortium ADHD Working Group, Nyholt, D. R., Medland, S. E., Neale, B., Jacobsson, B., Sunyer, J., Hartman, C. A., Whitehouse, A. J. O., Pennell, C. E., Heinrich, J., Plomin, R., Smith, G. D., Tiemeier, H., Posthuma, D., & Boomsma, D. I. (2016). A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts. Journal of the American Academy of Child & Adolescent Psychiatry, 55(10), 896-905. doi:10.1016/j.jaac.2016.05.025.
Abstract
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. -
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G. and 236 moreOkbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G., Brandsma, J., Pina Concas, M., Derringer, J., Furlotte, N. A., Galesloot, T. E., Girotto, G., Gupta, R., Hall, L. M., Harris, S. E., Hofer, E., Horikoshi, M., Huffman, J. E., Kaasik, K., Kalafati, I. P., Karlsson, R., Kong, A., Lahti, J., Lee, S. J. V. D., DeLeeuw, C., Lind, P. A., Lindgren, K.-.-O., Liu, T., Mangino, M., Marten, J., Mihailov, E., Miller, M. B., Van der Most, P. J., Oldmeadow, C., Payton, A., Pervjakova, N., Peyrot, W. J., Qian, Y., Raitakari, O., Rueedi, R., Salvi, E., Schmidt, B., Schraut, K. E., Shi, J., Smith, A. V., Poot, R. A., St Pourcain, B., Teumer, A., Thorleifsson, G., Verweij, N., Vuckovic, D., Wellmann, J., Westra, H.-.-J., Yang, J., Zhao, W., Zhu, Z., Alizadeh, B. Z., Amin, N., Bakshi, A., Baumeister, S. E., Biino, G., Bønnelykke, K., Boyle, P. A., Campbell, H., Cappuccio, F. P., Davies, G., De Neve, J.-.-E., Deloukas, P., Demuth, I., Ding, J., Eibich, P., Eisele, L., Eklund, N., Evans, D. M., Faul, J. D., Feitosa, M. F., Forstner, A. J., Gandin, I., Gunnarsson, B., Halldórsson, B. V., Harris, T. B., Heath, A. C., Hocking, L. J., Holliday, E. G., Homuth, G., Horan, M. A., Hottenga, J.-.-J., De Jager, P. L., Joshi, P. K., Jugessur, A., Kaakinen, M. A., Kähönen, M., Kanoni, S., Keltigangas-Järvinen, L., Kiemeney, L. A. L. M., Kolcic, I., Koskinen, S., Kraja, A. T., Kroh, M., Kutalik, Z., Latvala, A., Launer, L. J., Lebreton, M. P., Levinson, D. F., Lichtenstein, P., Lichtner, P., Liewald, D. C. M., Cohert Study, L., Loukola, A., Madden, P. A., Mägi, R., Mäki-Opas, T., Marioni, R. E., Marques-Vidal, P., Meddens, G. A., McMahon, G., Meisinger, C., Meitinger, T., Milaneschi, Y., Milani, L., Montgomery, G. W., Myhre, R., Nelson, C. P., Nyholt, D. R., Ollier, W. E. R., Palotie, A., Paternoster, L., Pedersen, N. L., Petrovic, K. E., Porteous, D. J., Räikkönen, K., Ring, S. M., Robino, A., Rostapshova, O., Rudan, I., Rustichini, A., Salomaa, V., Sanders, A. R., Sarin, A.-.-P., Schmidt, H., Scott, R. J., Smith, B. H., Smith, J. A., Staessen, J. A., Steinhagen-Thiessen, E., Strauch, K., Terracciano, A., Tobin, M. D., Ulivi, S., Vaccargiu, S., Quaye, L., Van Rooij, F. J. A., Venturini, C., Vinkhuyzen, A. A. E., Völker, U., Völzke, H., Vonk, J. M., Vozzi, D., Waage, J., Ware, E. B., Willemsen, G., Attia, J. R., Bennett, D. A., Berger, K., Bertram, L., Bisgaard, H., Boomsma, D. I., Borecki, I. B., Bültmann, U., Chabris, C. F., Cucca, F., Cusi, D., Deary, I. J., Dedoussis, G. V., Van Duijn, C. M., Eriksson, J. G., Franke, B., Franke, L., Gasparini, P., Gejman, P. V., Gieger, C., Grabe, H.-.-J., Gratten, J., Groenen, P. J. F., Gudnason, V., Van der Harst, P., Hayward, C., Hinds, D. A., Hoffmann, W., Hyppönen, E., Iacono, W. G., Jacobsson, B., Järvelin, M.-.-R., Jöckel, K.-.-H., Kaprio, J., Kardia, S. L. R., Lehtimäki, T., Lehrer, S. F., Magnusson, P. K. E., Martin, N. G., McGue, M., Metspalu, A., Pendleton, N., Penninx, B. W. J. H., Perola, M., Pirastu, N., Pirastu, M., Polasek, O., Posthuma, D., Power, C., Province, M. A., Samani, N. J., Schlessinger, D., Schmidt, R., Sørensen, T. I. A., Spector, T. D., Stefansson, K., Thorsteinsdottir, U., Thurik, A. R., Timpson, N. J., Tiemeier, H., Tung, J. Y., Uitterlinden, A. G., Vitart, V., Vollenweider, P., Weir, D. R., Wilson, J. F., Wright, A. F., Conley, D. C., Krueger, R. F., Davey Smith, G., Hofman, A., Laibson, D. I., Medland, S. E., Meyer, M. N., Yang, J., Johannesson, M., Visscher, P. M., Esko, T., Koellinger, P. D., Cesarini, D., & Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539-542. doi:10.1038/nature17671.
Abstract
Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases -
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E. and 23 morePappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E., Power, C., Raitakari, O. T., Ring, S. M., Rivadeneira, F., Rodriguez, A., Scheet, P. A., Seppälä, I., Snieder, H., Standl, M., Thiering, E., Timpson, N. J., Veenstra, R., Velders, F. P., Whitehouse, A. J. O., Smith, G. D., Heinrich, J., Hypponen, E., Lehtimäki, T., Middeldorp, C. M., Oldehinkel, A. J., Pennell, C. E., Boomsma, D. I., & Tiemeier, H. (2016). A genome-wide approach to children's aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 562-572. doi:10.1002/ajmg.b.32333.
Abstract
Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10–54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10−8). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning.Additional information
http://onlinelibrary.wiley.com/store/10.1002/ajmg.b.32333/asset/supinfo/ajmgb32… -
Robinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A. and 2 moreRobinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A., Smith, G. D., & Daly, M. J. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 48, 552-555. doi:10.1038/ng.3529.
Abstract
Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology.Additional information
ng.3529-S1.pdf -
Stock, N. M., Humphries, K., St Pourcain, B., Bailey, M., Persson, M., Ho, K. M., Ring, S., Marsh, C., Albery, L., Rumsey, N., & Sandy, J. (2016). Opportunities and Challenges in Establishing a Cohort Study: An Example From Cleft Lip/Palate Research in the United Kingdom. Cleft Palate-Craniofacial Journal, (3), 317-325. doi:10.1597/14-306.
Abstract
Full text and MPG-specific services(opens in a new window)|
Export
| Download | Add to List | More...
Cleft Palate-Craniofacial Journal
Volume 53, Issue 3, May 2016, Pages 317-325
Opportunities and challenges in establishing a cohort study: An example from cleft lip/palate research in the United Kingdom (Article)
Stock, N.M.a ,
Humphries, K.b,
St. Pourcain, B.b,
Bailey, M.b,
Persson, M.a,
Ho, K.M.b,
Ring, S.b,
Marsh, C.c,
Albery, L.c,
Rumsey, N.a,
Sandy, J.b
a Centre for Appearance Research, University of the West of England, Coldharbour Lane, Bristol, United Kingdom
b Faculty of Medicine and Dentistry, University of Bristol, United Kingdom
c South West Cleft Service, University Hospitals Bristol NHS Foundation Trust, United Kingdom
Hide additional affiliations
View references (32)
Abstract
Background: Cleft lip and/or palate (CL/P) is one of the most common birth conditions in the world, but little is known about its causes. Professional opinion remains divided as to which treatments may be the most beneficial for patients with CL/P, and the factors that contribute to psychological adjustment are poorly understood. The use of different methodological approaches and tools plays a key role in hampering efforts to address discrepancies within the evidence base. A new UK-wide program of research, The Cleft Collective, was established to combat many of these methodological challenges and to address some of the key research questions important to all CL/P stakeholders. Objective: To describe the establishment of CL/P cohort studies in the United Kingdom and to consider the many opportunities this resource will generate. Results: To date, protocols have been developed and implemented within most UK cleft teams. Biological samples, environmental information, and data pertaining to parental psychological well-being and child development are being collected successfully. Recruitment is currently on track to meet the ambitious target of approximately 9800 individuals from just more than 3000 families. Conclusions: The Cleft Collective cohort studies represent a significant step forward for research in the field of CL/P. The data collected will form a comprehensive resource of information about individuals with CL/P and their families. This resource will provide the basis for many future projects and collaborations, both in the United Kingdom and around the world. -
van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T. and 101 morevan den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T., Tanaka, T., Teumer, A., Viktorin, A., Wedenoja, J., Abdellaoui, A., Abecasis, G. R., Adkins, D. E., Agrawal, A., Allik, J., Appel, K., Bigdeli, T. B., Busonero, F., Campbell, H., Costa, P., Smith, G. D., Davies, G., de Wit, H., Ding, J., Engelhardt, B. E., Eriksson, J. G., Fedko, I. O., Ferrucci, L., Franke, B., Giegling, I., Grucza, R., Hartmann, A. M., Heath, A. C., Heinonen, K., Henders, A. K., Homuth, G., Hottenga, J.-J., Iacono, W. G., Janzing, J., Jokela, M., Karlsson, R., Kemp, J., Kirkpatrick, M. G., Latvala, A., Lehtimäki, T., Liewald, D. C., Madden, P. F., Magri, C., Magnusson, P. E., Marten, J., Maschio, A., Mbarek, H., Medland, S. E., Mihailov, E., Milaneschi, Y., Montgomery, G. W., Nauck, M., Nivard, M. G., Ouwens, K. G., Palotie, A., Pettersson, E., Polasek, O., Qian, Y., Pulkki-Råback, L., Raitakari, O., Realo, A., Rose, R. J., Ruggiero, D., Schmidt, C. O., Slutske, W. S., Sorice, R., Starr, J. M., St Pourcain, B., Sutin, A. R., Timpson, N. J., Trochet, H., Vermeulen, S., Vuoksimaa, E., Widen, E., Wouda, J., Wright, M. J., Zgaga, L., Porteous, D., Minelli, A., Palmer, A. A., Rujescu, D., Ciullo, M., Hayward, C., Rudan, I., Metspalu, A., Kaprio, J., Deary, I. J., Räikkönen, K., Wilson, J. F., Keltikangas-Järvinen, L., Bierut, L. J., Hettema, J. M., Grabe, H. J., Penninx, B. W. J. H., van Duijn, C. M., Evans, D. M., Schlessinger, D., Pedersen, N. L., Terracciano, A., McGue, M., Martin, N. G., & Boomsma, D. I. (2016). Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 46, 170-182. doi:10.1007/s10519-015-9735-5.
Abstract
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion. © 2015 The Author(s)Additional information
10519_2015_9735_MOESM1_ESM.docx
Share this page