Displaying 1 - 4 of 4
-
Hegemann, L., Eilertsen, E., Hagen Pettersen, J., Corfield, E. C., Cheesman, R., Frach, L., Daae Bjørndal, L., Ask, H., St Pourcain, B., Havdahl, A., & Hannigan, L. J. (2025). Direct and indirect genetic effects on early neurodevelopmental traits. The Journal of Child Psychology and Psychiatry. Advance online publication. doi:10.1111/jcpp.14122.
Abstract
Background
Neurodevelopmental conditions are highly heritable. Recent studies have shown that genomic heritability estimates can be confounded by genetic effects mediated via the environment (indirect genetic effects). However, the relative importance of direct versus indirect genetic effects on early variability in traits related to neurodevelopmental conditions is unknown.
Methods
The sample included up to 24,692 parent-offspring trios from the Norwegian MoBa cohort. We use Trio-GCTA to estimate latent direct and indirect genetic effects on mother-reported neurodevelopmental traits at age of 3 years (restricted and repetitive behaviors and interests, inattention, hyperactivity, language, social, and motor development). Further, we investigate to what extent direct and indirect effects are attributable to common genetic variants associated with autism, ADHD, developmental dyslexia, educational attainment, and cognitive ability using polygenic scores (PGS) in regression modeling.
Results
We find evidence for contributions of direct and indirect latent common genetic effects to inattention (direct: explaining 4.8% of variance, indirect: 6.7%) hyperactivity (direct: 1.3%, indirect: 9.6%), and restricted and repetitive behaviors (direct: 0.8%, indirect: 7.3%). Direct effects best explained variation in social and communication, language, and motor development (5.1%–5.7%). Direct genetic effects on inattention were captured by PGS for ADHD, educational attainment, and cognitive ability, whereas direct genetic effects on language development were captured by cognitive ability, educational attainment, and autism PGS. Indirect genetic effects on neurodevelopmental traits were primarily captured by educational attainment and/or cognitive ability PGS.
Conclusions
Results were consistent with differential contributions to neurodevelopmental traits in early childhood from direct and indirect genetic effects. Indirect effects were particularly important for hyperactivity and restricted and repetitive behaviors and interests and may be linked to genetic variation associated with cognition and educational attainment. Our findings illustrate the importance of within-family methods for disentangling genetic processes that influence early neurodevelopmental traits, even when identifiable associations are small.
Additional information
supplemental material -
Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K. and 341 moreGrasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K., Andersson, M., Ard, T., Armstrong, N. J., Ashley-Koch, A., Atkins, J. R., Bernard, M., Brouwer, R. M., Buimer, E. E. L., Bülow, R., Bürger, C., Cannon, D. M., Chakravarty, M., Chen, Q., Cheung, J. W., Couvy-Duchesne, B., Dale, A. M., Dalvie, S., De Araujo, T. K., De Zubicaray, G. I., De Zwarte, S. M. C., Den Braber, A., Doan, N. T., Dohm, K., Ehrlich, S., Engelbrecht, H.-R., Erk, S., Fan, C. C., Fedko, I. O., Foley, S. F., Ford, J. M., Fukunaga, M., Garrett, M. E., Ge, T., Giddaluru, S., Goldman, A. L., Green, M. J., Groenewold, N. A., Grotegerd, D., Gurholt, T. P., Gutman, B. A., Hansell, N. K., Harris, M. A., Harrison, M. B., Haswell, C. C., Hauser, M., Herms, S., Heslenfeld, D. J., Ho, N. F., Hoehn, D., Hoffmann, P., Holleran, L., Hoogman, M., Hottenga, J.-J., Ikeda, M., Janowitz, D., Jansen, I. E., Jia, T., Jockwitz, C., Kanai, R., Karama, S., Kasperaviciute, D., Kaufmann, T., Kelly, S., Kikuchi, M., Klein, M., Knapp, M., Knodt, A. R., Krämer, B., Lam, M., Lancaster, T. M., Lee, P. H., Lett, T. A., Lewis, L. B., Lopes-Cendes, I., Luciano, M., Macciardi, F., Marquand, A. F., Mathias, S. R., Melzer, T. R., Milaneschi, Y., Mirza-Schreiber, N., Moreira, J. C. V., Mühleisen, T. W., Müller-Myhsok, B., Najt, P., Nakahara, S., Nho, K., Olde Loohuis, L. M., Orfanos, D. P., Pearson, J. F., Pitcher, T. L., Pütz, B., Quidé, Y., Ragothaman, A., Rashid, F. M., Reay, W. R., Redlich, R., Reinbold, C. S., Repple, J., Richard, G., Riedel, B. C., Risacher, S. L., Rocha, C. S., Mota, N. R., Salminen, L., Saremi, A., Saykin, A. J., Schlag, F., Schmaal, L., Schofield, P. R., Secolin, R., Shapland, C. Y., Shen, L., Shin, J., Shumskaya, E., Sønderby, I. E., Sprooten, E., Tansey, K. E., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Turner, J. A., Uhlmann, A., Vallerga, C. L., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, L., Van Erp, T. G. M., Van Haren, N. E. M., Van Rooij, D., Van Tol, M.-J., Veldink, J. H., Verhoef, E., Walton, E., Wang, M., Wang, Y., Wardlaw, J. M., Wen, W., Westlye, L. T., Whelan, C. D., Witt, S. H., Wittfeld, K., Wolf, C., Wolfers, T., Wu, J. Q., Yasuda, C. L., Zaremba, D., Zhang, Z., Zwiers, M. P., Artiges, E., Assareh, A. A., Ayesa-Arriola, R., Belger, A., Brandt, C. L., Brown, G. G., Cichon, S., Curran, J. E., Davies, G. E., Degenhardt, F., Dennis, M. F., Dietsche, B., Djurovic, S., Doherty, C. P., Espiritu, R., Garijo, D., Gil, Y., Gowland, P. A., Green, R. C., Häusler, A. N., Heindel, W., Ho, B.-C., Hoffmann, W. U., Holsboer, F., Homuth, G., Hosten, N., Jack Jr., C. R., Jang, M., Jansen, A., Kimbrel, N. A., Kolskår, K., Koops, S., Krug, A., Lim, K. O., Luykx, J. J., Mathalon, D. H., Mather, K. A., Mattay, V. S., Matthews, S., Mayoral Van Son, J., McEwen, S. C., Melle, I., Morris, D. W., Mueller, B. A., Nauck, M., Nordvik, J. E., Nöthen, M. M., O’Leary, D. S., Opel, N., Paillère Martinot, M.-L., Pike, G. B., Preda, A., Quinlan, E. B., Rasser, P. E., Ratnakar, V., Reppermund, S., Steen, V. M., Tooney, P. A., Torres, F. R., Veltman, D. J., Voyvodic, J. T., Whelan, R., White, T., Yamamori, H., Adams, H. H. H., Bis, J. C., Debette, S., Decarli, C., Fornage, M., Gudnason, V., Hofer, E., Ikram, M. A., Launer, L., Longstreth, W. T., Lopez, O. L., Mazoyer, B., Mosley, T. H., Roshchupkin, G. V., Satizabal, C. L., Schmidt, R., Seshadri, S., Yang, Q., Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson’s Progression Markers Initiative, Alvim, M. K. M., Ames, D., Anderson, T. J., Andreassen, O. A., Arias-Vasquez, A., Bastin, M. E., Baune, B. T., Beckham, J. C., Blangero, J., Boomsma, D. I., Brodaty, H., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bustillo, J. R., Cahn, W., Cairns, M. J., Calhoun, V., Carr, V. J., Caseras, X., Caspers, S., Cavalleri, G. L., Cendes, F., Corvin, A., Crespo-Facorro, B., Dalrymple-Alford, J. C., Dannlowski, U., De Geus, E. J. C., Deary, I. J., Delanty, N., Depondt, C., Desrivières, S., Donohoe, G., Espeseth, T., Fernández, G., Fisher, S. E., Flor, H., Forstner, A. J., Francks, C., Franke, B., Glahn, D. C., Gollub, R. L., Grabe, H. J., Gruber, O., Håberg, A. K., Hariri, A. R., Hartman, C. A., Hashimoto, R., Heinz, A., Henskens, F. A., Hillegers, M. H. J., Hoekstra, P. J., Holmes, A. J., Hong, L. E., Hopkins, W. D., Hulshoff Pol, H. E., Jernigan, T. L., Jönsson, E. G., Kahn, R. S., Kennedy, M. A., Kircher, T. T. J., Kochunov, P., Kwok, J. B. J., Le Hellard, S., Loughland, C. M., Martin, N. G., Martinot, J.-L., McDonald, C., McMahon, K. L., Meyer-Lindenberg, A., Michie, P. T., Morey, R. A., Mowry, B., Nyberg, L., Oosterlaan, J., Ophoff, R. A., Pantelis, C., Paus, T., Pausova, Z., Penninx, B. W. J. H., Polderman, T. J. C., Posthuma, D., Rietschel, M., Roffman, J. L., Rowland, L. M., Sachdev, P. S., Sämann, P. G., Schall, U., Schumann, G., Scott, R. J., Sim, K., Sisodiya, S. M., Smoller, J. W., Sommer, I. E., St Pourcain, B., Stein, D. J., Toga, A. W., Trollor, J. N., Van der Wee, N. J. A., van 't Ent, D., Völzke, H., Walter, H., Weber, B., Weinberger, D. R., Wright, M. J., Zhou, J., Stein, J. L., Thompson, P. M., & Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484): eaay6690. doi:10.1126/science.aay6690.
Abstract
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder. -
Hofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., Ahmad, S., Armstrong, N. J., Satizabal, C. L., Bernard, M., Bis, J. C., Gillespie, N. A., Luciano, M., Mishra, A., Scholz, M., Teumer, A., Xia, R., Jian, X., Mosley, T. H. and 79 moreHofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., Ahmad, S., Armstrong, N. J., Satizabal, C. L., Bernard, M., Bis, J. C., Gillespie, N. A., Luciano, M., Mishra, A., Scholz, M., Teumer, A., Xia, R., Jian, X., Mosley, T. H., Saba, Y., Pirpamer, L., Seiler, S., Becker, J. T., Carmichael, O., Rotter, J. I., Psaty, B. M., Lopez, O. L., Amin, N., Van der Lee, S. J., Yang, Q., Himali, J. J., Maillard, P., Beiser, A. S., DeCarli, C., Karama, S., Lewis, L., Harris, M., Bastin, M. E., Deary, I. J., Witte, A. V., Beyer, F., Loeffler, M., Mather, K. A., Schofield, P. R., Thalamuthu, A., Kwok, J. B., Wright, M. J., Ames, D., Trollor, J., Jiang, J., Brodaty, H., Wen, W., Vernooij, M. W., Hofman, A., Uitterlinden, A. G., Niessen, W. J., Wittfeld, K., Bülow, R., Völker, U., Pausova, Z., Pike, G. B., Maingault, S., Crivello, F., Tzourio, C., Amouyel, P., Mazoyer, B., Neale, M. C., Franz, C. E., Lyons, M. J., Panizzon, M. S., Andreassen, O. A., Dale, A. M., Logue, M., Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Stein, J. L., Thompson, P. M., Medland, S. E., ENIGMA-consortium, Sachdev, P. S., Kremen, W. S., Wardlaw, J. M., Villringer, A., Van Duijn, C. M., Grabe, H. J., Longstreth, W. T., Fornage, M., Paus, T., Debette, S., Ikram, M. A., Schmidt, H., Schmidt, R., & Seshadri, S. (2020). Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 11: 4796. doi:10.1038/s41467-020-18367-y.
Additional information
supplementary information -
Howe, L. J., Hemani, G., Lesseur, C., Gaborieau, V., Ludwig, K. U., Mangold, E., Brennan, P., Ness, A. R., St Pourcain, B., Smith, G. D., & Lewis, S. J. (2020). Evaluating shared genetic influences on nonsyndromic cleft lip/palate and oropharyngeal neoplasms. Genetic Epidemiology, 44(8), 924-933. doi:10.1002/gepi.22343.
Abstract
It has been hypothesised that nonsyndromic cleft lip/palate (nsCL/P) and cancer may share aetiological risk factors. Population studies have found inconsistent evidence for increased incidence of cancer in nsCL/P cases, but several genes (e.g.,CDH1,AXIN2) have been implicated in the aetiologies of both phenotypes. We aimed to evaluate shared genetic aetiology between nsCL/P and oral cavity/oropharyngeal cancers (OC/OPC), which affect similar anatomical regions. Using a primary sample of 5,048 OC/OPC cases and 5,450 controls of European ancestry and a replication sample of 750 cases and 336,319 controls from UK Biobank, we estimate genetic overlap using nsCL/P polygenic risk scores (PRS) with Mendelian randomization analyses performed to evaluate potential causal mechanisms. In the primary sample, we found strong evidence for an association between a nsCL/P PRS and increased odds of OC/OPC (per standard deviation increase in score, odds ratio [OR]: 1.09; 95% confidence interval [CI]: 1.04, 1.13;p = .000053). Although confidence intervals overlapped with the primary estimate, we did not find confirmatory evidence of an association between the PRS and OC/OPC in UK Biobank (OR 1.02; 95% CI: 0.95, 1.10;p = .55). Mendelian randomization analyses provided evidence that major nsCL/P risk variants are unlikely to influence OC/OPC. Our findings suggest possible shared genetic influences on nsCL/P and OC/OPC.Additional information
Supporting information
Share this page