Mengyun Wang

Publications

Displaying 1 - 2 of 2
  • Korbmacher, M., Tranfa, M., Pontillo, G., Van der Meer, D., Wang, M.-Y., Andreassen, O. A., Westlye, L. T., & Maximov, I. I. (2025). White matter microstructure links with brain, bodily and genetic attributes in adolescence, mid- and late life. NeuroImage, 310: 121132. doi:10.1016/j.neuroimage.2025.121132.

    Abstract

    Advanced diffusion magnetic resonance imaging (dMRI) allows one to probe and assess brain white matter (WM) organisation and microstructure in vivo. Various dMRI models with different theoretical and practical assumptions have been developed, representing partly overlapping characteristics of the underlying brain biology with potentially complementary value in the cognitive and clinical neurosciences. To which degree the different dMRI metrics relate to clinically relevant geno- and phenotypes is still debated. Hence, we investigate how tract-based and whole WM skeleton parameters from different dMRI approaches associate with clinically relevant and white matter-related phenotypes (sex, age, pulse pressure (PP), body-mass-index (BMI), brain asymmetry) and genetic markers in the UK Biobank (UKB, n=52,140) and the Adolescent Brain Cognitive Development (ABCD) Study (n=5,844). In general, none of the imaging approaches could explain all examined phenotypes, though the approaches were overall similar in explaining variability of the examined phenotypes. Nevertheless, particular diffusion parameters of the used dMRI approaches stood out in explaining some important phenotypes known to correlate with general human health outcomes. A multi-compartment Bayesian dMRI approach provided the strongest WM associations with age, and together with diffusion tensor imaging, the largest accuracy for sex-classifications. We find a similar pattern of metric and tract-dependent asymmetries across datasets, with stronger asymmetries in ABCD data. The magnitude of WM associations with polygenic scores as well as PP depended more on the sample, and likely age, than dMRI metrics. However, kurtosis was most indicative of BMI and potentially of bipolar disorder polygenic scores. We conclude that WM microstructure is differentially associated with clinically relevant pheno- and genotypes at different points in life.

    Additional information

    supplementary data supplementary tables
  • Wang, M.-Y., Korbmacher, M., Eikeland, R., Craven, A. R., & Specht, K. (2024). The intra‐individual reliability of 1H‐MRS measurement in the anterior cingulate cortex across 1 year. Human Brain Mapping, 45(1): e26531. doi:10.1002/hbm.26531.

    Abstract

    Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.

    Additional information

    tables and figures data

Share this page