Displaying 1 - 3 of 3
-
Jin, H., Wang, Q., Yang, Y.-F., Zhang, H., Gao, M. (., Jin, S., Chen, Y. (., Xu, T., Zheng, Y.-R., Chen, J., Xiao, Q., Yang, J., Wang, X., Geng, H., Ge, J., Wang, W.-W., Chen, X., Zhang, L., Zuo, X.-N., & Chuan-Peng, H. (2023). The Chinese Open Science Network (COSN): Building an open science community from scratch. Advances in Methods and Practices in Psychological Science, 6(1): 10.1177/25152459221144986. doi:10.1177/25152459221144986.
Abstract
Open Science is becoming a mainstream scientific ideology in psychology and related fields. However, researchers, especially early-career researchers (ECRs) in developing countries, are facing significant hurdles in engaging in Open Science and moving it forward. In China, various societal and cultural factors discourage ECRs from participating in Open Science, such as the lack of dedicated communication channels and the norm of modesty. To make the voice of Open Science heard by Chinese-speaking ECRs and scholars at large, the Chinese Open Science Network (COSN) was initiated in 2016. With its core values being grassroots-oriented, diversity, and inclusivity, COSN has grown from a small Open Science interest group to a recognized network both in the Chinese-speaking research community and the international Open Science community. So far, COSN has organized three in-person workshops, 12 tutorials, 48 talks, and 55 journal club sessions and translated 15 Open Science-related articles and blogs from English to Chinese. Currently, the main social media account of COSN (i.e., the WeChat Official Account) has more than 23,000 subscribers, and more than 1,000 researchers/students actively participate in the discussions on Open Science. In this article, we share our experience in building such a network to encourage ECRs in developing countries to start their own Open Science initiatives and engage in the global Open Science movement. We foresee great collaborative efforts of COSN together with all other local and international networks to further accelerate the Open Science movement. -
Yang, J. (2022). Discovering the units in language cognition: From empirical evidence to a computational model. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Yang, J., Van den Bosch, A., & Frank, S. L. (2022). Unsupervised text segmentation predicts eye fixations during reading. Frontiers in Artificial Intelligence, 5: 731615. doi:10.3389/frai.2022.731615.
Abstract
Words typically form the basis of psycholinguistic and computational linguistic studies about sentence processing. However, recent evidence shows the basic units during reading, i.e., the items in the mental lexicon, are not always words, but could also be sub-word and supra-word units. To recognize these units, human readers require a cognitive mechanism to learn and detect them. In this paper, we assume eye fixations during reading reveal the locations of the cognitive units, and that the cognitive units are analogous with the text units discovered by unsupervised segmentation models. We predict eye fixations by model-segmented units on both English and Dutch text. The results show the model-segmented units predict eye fixations better than word units. This finding suggests that the predictive performance of model-segmented units indicates their plausibility as cognitive units. The Less-is-Better (LiB) model, which finds the units that minimize both long-term and working memory load, offers advantages both in terms of prediction score and efficiency among alternative models. Our results also suggest that modeling the least-effort principle for the management of long-term and working memory can lead to inferring cognitive units. Overall, the study supports the theory that the mental lexicon stores not only words but also smaller and larger units, suggests that fixation locations during reading depend on these units, and shows that unsupervised segmentation models can discover these units.
Share this page