Jinbiao Yang

Publications

Displaying 1 - 2 of 2
  • Yang, J. (2024). Rethinking tokenization: Crafting better tokenizers for large language models. International Journal of Chinese Linguistics, 11(1), 94-109. doi:10.1075/ijchl.00023.yan.

    Abstract

    Tokenization significantly influences language models (LMs)’ performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the “Principle of Least Effort” from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient.
  • Jin, H., Wang, Q., Yang, Y.-F., Zhang, H., Gao, M. (., Jin, S., Chen, Y. (., Xu, T., Zheng, Y.-R., Chen, J., Xiao, Q., Yang, J., Wang, X., Geng, H., Ge, J., Wang, W.-W., Chen, X., Zhang, L., Zuo, X.-N., & Chuan-Peng, H. (2023). The Chinese Open Science Network (COSN): Building an open science community from scratch. Advances in Methods and Practices in Psychological Science, 6(1): 10.1177/25152459221144986. doi:10.1177/25152459221144986.

    Abstract

    Open Science is becoming a mainstream scientific ideology in psychology and related fields. However, researchers, especially early-career researchers (ECRs) in developing countries, are facing significant hurdles in engaging in Open Science and moving it forward. In China, various societal and cultural factors discourage ECRs from participating in Open Science, such as the lack of dedicated communication channels and the norm of modesty. To make the voice of Open Science heard by Chinese-speaking ECRs and scholars at large, the Chinese Open Science Network (COSN) was initiated in 2016. With its core values being grassroots-oriented, diversity, and inclusivity, COSN has grown from a small Open Science interest group to a recognized network both in the Chinese-speaking research community and the international Open Science community. So far, COSN has organized three in-person workshops, 12 tutorials, 48 talks, and 55 journal club sessions and translated 15 Open Science-related articles and blogs from English to Chinese. Currently, the main social media account of COSN (i.e., the WeChat Official Account) has more than 23,000 subscribers, and more than 1,000 researchers/students actively participate in the discussions on Open Science. In this article, we share our experience in building such a network to encourage ECRs in developing countries to start their own Open Science initiatives and engage in the global Open Science movement. We foresee great collaborative efforts of COSN together with all other local and international networks to further accelerate the Open Science movement.

Share this page