Antje Meyer

Publications

Displaying 1 - 11 of 11
  • Bujok, R., Meyer, A. S., & Bosker, H. R. (2025). Audiovisual perception of lexical stress: Beat gestures and articulatory cues. Language and Speech, 68(1), 181-203. doi:10.1177/00238309241258162.

    Abstract

    Human communication is inherently multimodal. Auditory speech, but also visual cues can be used to understand another talker. Most studies of audiovisual speech perception have focused on the perception of speech segments (i.e., speech sounds). However, less is known about the influence of visual information on the perception of suprasegmental aspects of speech like lexical stress. In two experiments, we investigated the influence of different visual cues (e.g., facial articulatory cues and beat gestures) on the audiovisual perception of lexical stress. We presented auditory lexical stress continua of disyllabic Dutch stress pairs together with videos of a speaker producing stress on the first or second syllable (e.g., articulating VOORnaam or voorNAAM). Moreover, we combined and fully crossed the face of the speaker producing lexical stress on either syllable with a gesturing body producing a beat gesture on either the first or second syllable. Results showed that people successfully used visual articulatory cues to stress in muted videos. However, in audiovisual conditions, we were not able to find an effect of visual articulatory cues. In contrast, we found that the temporal alignment of beat gestures with speech robustly influenced participants' perception of lexical stress. These results highlight the importance of considering suprasegmental aspects of language in multimodal contexts.
  • Hintz, F., Dijkhuis, M., Van 't Hoff, V., Huijsmans, M., Kievit, R. A., McQueen, J. M., & Meyer, A. S. (2025). Evaluating the factor structure of the Dutch Individual Differences in Language Skills (IDLaS-NL) test battery. Brain Research, 1852: 149502. doi:10.1016/j.brainres.2025.149502.

    Abstract

    Individual differences in using language are prevalent in our daily lives. Language skills are often assessed in vocational (predominantly written language) and diagnostic contexts. Not much is known, however, about individual differences in spoken language skills. The lack of research is in part due to the lack of suitable test instruments. We introduce the Individual Differences in Language Skills (IDLaS-NL) test battery, a set of 31 behavioural tests that can be used to capture variability in language and relevant general cognitive skills in adult speakers of Dutch. The battery was designed to measure word and sentence production and comprehension skills, linguistic knowledge, nonverbal processing speed, working memory, and nonverbal reasoning. The present article outlines the structure of the battery, describes the materials and procedure of each test, and evaluates the battery’s factor structure based on the results of a sample of 748 Dutch adults, aged between 18 and 30 years, most of them students. The analyses demonstrate that the battery has good construct validity and can be reliably administered both in the lab and via the internet. We therefore recommend the battery as a valuable new tool to assess individual differences in language knowledge and skills; this future work may include linking language skills to other aspects of human cognition and life outcomes.
  • McConnell, K., Hintz, F., & Meyer, A. S. (2025). Individual differences in online research: Comparing lab-based and online administration of a psycholinguistic battery of linguistic and domain-general skills. Behavior Research Methods, 57: 22. doi:10.3758/s13428-024-02533-x.

    Abstract

    Experimental psychologists and psycholinguists increasingly turn to online research for data collection due to the ease of sampling many diverse participants in parallel. Online research has shown promising validity and consistency, but is it suitable for all paradigms? Specifically, is it reliable enough for individual differences research? The current paper reports performance on 15 tasks from a psycholinguistic individual differences battery, including timed and untimed assessments of linguistic abilities, as well as domain-general skills. From a demographically homogenous sample of young Dutch people, 149 participants participated in the lab study, and 515 participated online. Our results indicate that there is no reason to assume that participants tested online will underperform compared to lab-based testing, though they highlight the importance of motivation and the potential for external help (e.g., through looking up answers) online. Overall, we conclude that there is reason for optimism in the future of online research into individual differences.
  • Papoutsi, C., Tourtouri, E. N., Piai, V., Lampe, L. F., & Meyer, A. S. (2025). Fast and slow errors: What naming latencies of errors reveal about the interplay of attentional control and word planning in speeded picture naming. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. doi:10.1037/xlm0001472.

    Abstract

    Speakers sometimes produce lexical errors, such as saying “salt” instead of “pepper.” This study aimed to better understand the origin of lexical errors by assessing whether they arise from a hasty selection and premature decision to speak (premature selection hypothesis) or from momentary attentional disengagement from the task (attentional lapse hypothesis). We analyzed data from a speeded picture naming task (Lampe et al., 2023) and investigated whether lexical errors are produced as fast as target (i.e., correct) responses, thus arising from premature selection, or whether they are produced more slowly than target responses, thus arising from lapses of attention. Using ex-Gaussian analyses, we found that lexical errors were slower than targets in the tail, but not in the normal part of the response time distribution, with the tail effect primarily resulting from errors that were not coordinates, that is, members of the target’s semantic category. Moreover, we compared the coordinate errors and target responses in terms of their word-intrinsic properties and found that they were overall more frequent, shorter, and acquired earlier than targets. Given the present findings, we conclude that coordinate errors occur due to a premature selection but in the context of intact attentional control, following the same lexical constraints as targets, while other errors, given the variability in their nature, may vary in their origin, with one potential source being lapses of attention.
  • Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10(5), 553-567. doi:10.1162/089892998562960.

    Abstract

    The purpose of this study was to relate a psycholinguistic processing model of picture naming to the dynamics of cortical activation during picture naming. The activation was recorded from eight Dutch subjects with a whole-head neuromagnetometer. The processing model, based on extensive naming latency studies, is a stage model. In preparing a picture's name, the speaker performs a chain of specific operations. They are, in this order, computing the visual percept, activating an appropriate lexical concept, selecting the target word from the mental lexicon, phonological encoding, phonetic encoding, and initiation of articulation. The time windows for each of these operations are reasonably well known and could be related to the peak activity of dipole sources in the individual magnetic response patterns. The analyses showed a clear progression over these time windows from early occipital activation, via parietal and temporal to frontal activation. The major specific findings were that (1) a region in the left posterior temporal lobe, agreeing with the location of Wernicke's area, showed prominent activation starting about 200 msec after picture onset and peaking at about 350 msec, (i.e., within the stage of phonological encoding), and (2) a consistent activation was found in the right parietal cortex, peaking at about 230 msec after picture onset, thus preceding and partly overlapping with the left temporal response. An interpretation in terms of the management of visual attention is proposed.
  • Meyer, A. S., Sleiderink, A. M., & Levelt, W. J. M. (1998). Viewing and naming objects: Eye movements during noun phrase production. Cognition, 66(2), B25-B33. doi:10.1016/S0010-0277(98)00009-2.

    Abstract

    Eye movements have been shown to reflect word recognition and language comprehension processes occurring during reading and auditory language comprehension. The present study examines whether the eye movements speakers make during object naming similarly reflect speech planning processes. In Experiment 1, speakers named object pairs saying, for instance, 'scooter and hat'. The objects were presented as ordinary line drawings or with partly dele:ed contours and had high or low frequency names. Contour type and frequency both significantly affected the mean naming latencies and the mean time spent looking at the objects. The frequency effects disappeared in Experiment 2, in which the participants categorized the objects instead of naming them. This suggests that the frequency effects of Experiment 1 arose during lexical retrieval. We conclude that eye movements during object naming indeed reflect linguistic planning processes and that the speakers' decision to move their eyes from one object to the next is contingent upon the retrieval of the phonological form of the object names.
  • Praamstra, P., Stegeman, D. F., Cools, A. R., Meyer, A. S., & Horstink, M. W. I. M. (1998). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements: A PET study. Brain, 121, 769-772. doi:10.1093/brain/121.4.769.
  • Roelofs, A., Meyer, A. S., & Levelt, W. J. M. (1998). A case for the lemma/lexeme distinction in models of speaking: Comment on Caramazza and Miozzo (1997). Cognition, 69(2), 219-230. doi:10.1016/S0010-0277(98)00056-0.

    Abstract

    In a recent series of papers, Caramazza and Miozzo [Caramazza, A., 1997. How many levels of processing are there in lexical access? Cognitive Neuropsychology 14, 177-208; Caramazza, A., Miozzo, M., 1997. The relation between syntactic and phonological knowledge in lexical access: evidence from the 'tip-of-the-tongue' phenomenon. Cognition 64, 309-343; Miozzo, M., Caramazza, A., 1997. On knowing the auxiliary of a verb that cannot be named: evidence for the independence of grammatical and phonological aspects of lexical knowledge. Journal of Cognitive Neuropsychology 9, 160-166] argued against the lemma/lexeme distinction made in many models of lexical access in speaking, including our network model [Roelofs, A., 1992. A spreading-activation theory of lemma retrieval in speaking. Cognition 42, 107-142; Levelt, W.J.M., Roelofs, A., Meyer, A.S., 1998. A theory of lexical access in speech production. Behavioral and Brain Sciences, (in press)]. Their case was based on the observations that grammatical class deficits of brain-damaged patients and semantic errors may be restricted to either spoken or written forms and that the grammatical gender of a word and information about its form can be independently available in tip-of-the-tongue stales (TOTs). In this paper, we argue that though our model is about speaking, not taking position on writing, extensions to writing are possible that are compatible with the evidence from aphasia and speech errors. Furthermore, our model does not predict a dependency between gender and form retrieval in TOTs. Finally, we argue that Caramazza and Miozzo have not accounted for important parts of the evidence motivating the lemma/lexeme distinction, such as word frequency effects in homophone production, the strict ordering of gender and pho neme access in LRP data, and the chronometric and speech error evidence for the production of complex morphology.
  • Roelofs, A., & Meyer, A. S. (1998). Metrical structure in planning the production of spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 922-939. doi:10.1037/0278-7393.24.4.922.

    Abstract

    According to most models of speech production, the planning of spoken words involves the independent retrieval of segments and metrical frames followed by segment-to-frame association. In some models, the metrical frame includes a specification of the number and ordering of consonants and vowels, but in the word-form encoding by activation and verification (WEAVER) model (A. Roelofs, 1997), the frame specifies only the stress pattern across syllables. In 6 implicit priming experiments, on each trial, participants produced 1 word out of a small set as quickly as possible. In homogeneous sets, the response words shared word-initial segments, whereas in heterogeneous sets, they did not. Priming effects from shared segments depended on all response words having the same number of syllables and stress pattern, but not on their having the same number of consonants and vowels. No priming occurred when the response words had only the same metrical frame but shared no segments. Computer simulations demonstrated that WEAVER accounts for the findings.
  • Meyer, A. S. (1994). Timing in sentence production. Journal of Memory and Language, 33, 471-492. doi:doi:10.1006/jmla.1994.1022.

    Abstract

    Recently, a new theory of timing in sentence production has been proposed by Ferreira (1993). This theory assumes that at the phonological level, each syllable of an utterance is assigned one or more abstract timing units depending on its position in the prosodic structure. The number of timing units associated with a syllable determines the time interval between its onset and the onset of the next syllable. An interesting prediction from the theory, which was confirmed in Ferreira's experiments with speakers of American English, is that the time intervals between syllable onsets should only depend on the syllables' positions in the prosodic structure, but not on their segmental content. However, in the present experiments, which were carried out in Dutch, the intervals between syllable onsets were consistently longer for phonetically long syllables than for short syllables. The implications of this result for models of timing in sentence production are discussed.
  • Praamstra, P., Meyer, A. S., & Levelt, W. J. M. (1994). Neurophysiological manifestations of auditory phonological processing: Latency variation of a negative ERP component timelocked to phonological mismatch. Journal of Cognitive Neuroscience, 6(3), 204-219. doi:10.1162/jocn.1994.6.3.204.

    Abstract

    Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 msec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments.

Share this page