James McQueen

Publications

Displaying 1 - 14 of 14
  • Dai, B., McQueen, J. M., Terporten, R., Hagoort, P., & Kösem, A. (2022). Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. Current Research in Neurobiology, 3: 100043. doi:10.1016/j.crneur.2022.100043.

    Abstract

    Listening to speech is difficult in noisy environments, and is even harder when the interfering noise consists of intelligible speech as compared to unintelligible sounds. This suggests that the competing linguistic information interferes with the neural processing of target speech. Interference could either arise from a degradation of the neural representation of the target speech, or from increased representation of distracting speech that enters in competition with the target speech. We tested these alternative hypotheses using magnetoencephalography (MEG) while participants listened to a target clear speech in the presence of distracting noise-vocoded speech. Crucially, the distractors were initially unintelligible but became more intelligible after a short training session. Results showed that the comprehension of the target speech was poorer after training than before training. The neural tracking of target speech in the delta range (1–4 Hz) reduced in strength in the presence of a more intelligible distractor. In contrast, the neural tracking of distracting signals was not significantly modulated by intelligibility. These results suggest that the presence of distracting speech signals degrades the linguistic representation of target speech carried by delta oscillations.
  • Hintz, F., Voeten, C. C., McQueen, J. M., & Meyer, A. S. (2022). Quantifying the relationships between linguistic experience, general cognitive skills and linguistic processing skills. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 2491-2496). Toronto, Canada: Cognitive Science Society.

    Abstract

    Humans differ greatly in their ability to use language. Contemporary psycholinguistic theories assume that individual differences in language skills arise from variability in linguistic experience and in general cognitive skills. While much previous research has tested the involvement of select verbal and non-verbal variables in select domains of linguistic processing, comprehensive characterizations of the relationships among the skills underlying language use are rare. We contribute to such a research program by re-analyzing a publicly available set of data from 112 young adults tested on 35 behavioral tests. The tests assessed nine key constructs reflecting linguistic processing skills, linguistic experience and general cognitive skills. Correlation and hierarchical clustering analyses of the test scores showed that most of the tests assumed to measure the same construct correlated moderately to strongly and largely clustered together. Furthermore, the results suggest important roles of processing speed in comprehension, and of linguistic experience in production.
  • Menks, W. M., Ekerdt, C., Janzen, G., Kidd, E., Lemhöfer, K., Fernández, G., & McQueen, J. M. (2022). Study protocol: A comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning. BMC Psychology, 10: 169. doi:10.1186/s40359-022-00873-x.

    Abstract

    Background

    While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/).
    Methods

    We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1‐weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning.
    Discussion

    This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
  • Severijnen, G. G. A., Bosker, H. R., & McQueen, J. M. (2022). Acoustic correlates of Dutch lexical stress re-examined: Spectral tilt is not always more reliable than intensity. In S. Frota, M. Cruz, & M. Vigário (Eds.), Proceedings of Speech Prosody 2022 (pp. 278-282). doi:10.21437/SpeechProsody.2022-57.

    Abstract

    The present study examined two acoustic cues in the production
    of lexical stress in Dutch: spectral tilt and overall intensity.
    Sluijter and Van Heuven (1996) reported that spectral tilt is a
    more reliable cue to stress than intensity. However, that study
    included only a small number of talkers (10) and only syllables
    with the vowels /aː/ and /ɔ/.
    The present study re-examined this issue in a larger and
    more variable dataset. We recorded 38 native speakers of Dutch
    (20 females) producing 744 tokens of Dutch segmentally
    overlapping words (e.g., VOORnaam vs. voorNAAM, “first
    name” vs. “respectable”), targeting 10 different vowels, in
    variable sentence contexts. For each syllable, we measured
    overall intensity and spectral tilt following Sluijter and Van
    Heuven (1996).
    Results from Linear Discriminant Analyses showed that,
    for the vowel /aː/ alone, spectral tilt showed an advantage over
    intensity, as evidenced by higher stressed/unstressed syllable
    classification accuracy scores for spectral tilt. However, when
    all vowels were included in the analysis, the advantage
    disappeared.
    These findings confirm that spectral tilt plays a larger role
    in signaling stress in Dutch /aː/ but show that, for a larger
    sample of Dutch vowels, overall intensity and spectral tilt are
    equally important.
  • Strauß, A., Wu, T., McQueen, J. M., Scharenborg, O., & Hintz, F. (2022). The differential roles of lexical and sublexical processing during spoken-word recognition in clear and in noise. Cortex, 151, 70-88. doi:10.1016/j.cortex.2022.02.011.

    Abstract

    Successful spoken-word recognition relies on an interplay between lexical and sublexical processing. Previous research demonstrated that listeners readily shift between more lexically-biased and more sublexically-biased modes of processing in response to the situational context in which language comprehension takes place. Recognizing words in the presence of background noise reduces the perceptual evidence for the speech signal and – compared to the clear – results in greater uncertainty. It has been proposed that, when dealing with greater uncertainty, listeners rely more strongly on sublexical processing. The present study tested this proposal using behavioral and electroencephalography (EEG) measures. We reasoned that such an adjustment would be reflected in changes in the effects of variables predicting recognition performance with loci at lexical and sublexical levels, respectively. We presented native speakers of Dutch with words featuring substantial variability in (1) word frequency (locus at lexical level), (2) phonological neighborhood density (loci at lexical and sublexical levels) and (3) phonotactic probability (locus at sublexical level). Each participant heard each word in noise (presented at one of three signal-to-noise ratios) and in the clear and performed a two-stage lexical decision and transcription task while EEG was recorded. Using linear mixed-effects analyses, we observed behavioral evidence that listeners relied more strongly on sublexical processing when speech quality decreased. Mixed-effects modelling of the EEG signal in the clear condition showed that sublexical effects were reflected in early modulations of ERP components (e.g., within the first 300 ms post word onset). In noise, EEG effects occurred later and involved multiple regions activated in parallel. Taken together, we found evidence – especially in the behavioral data – supporting previous accounts that the presence of background noise induces a stronger reliance on sublexical processing.
  • Cutler, A., McQueen, J. M., Jansonius, M., & Bayerl, S. (2002). The lexical statistics of competitor activation in spoken-word recognition. In C. Bow (Ed.), Proceedings of the 9th Australian International Conference on Speech Science and Technology (pp. 40-45). Canberra: Australian Speech Science and Technology Association (ASSTA).

    Abstract

    The Possible Word Constraint is a proposed mechanism whereby listeners avoid recognising words spuriously embedded in other words. It applies to words leaving a vowelless residue between their edge and the nearest known word or syllable boundary. The present study tests the usefulness of this constraint via lexical statistics of both English and Dutch. The analyses demonstrate that the constraint removes a clear majority of embedded words in speech, and thus can contribute significantly to the efficiency of human speech recognition
  • Cutler, A., Demuth, K., & McQueen, J. M. (2002). Universality versus language-specificity in listening to running speech. Psychological Science, 13(3), 258-262. doi:10.1111/1467-9280.00447.

    Abstract

    Recognizing spoken language involves automatic activation of multiple candidate words. The process of selection between candidates is made more efficient by inhibition of embedded words (like egg in beg) that leave a portion of the input stranded (here, b). Results from European languages suggest that this inhibition occurs when consonants are stranded but not when syllables are stranded. The reason why leftover syllables do not lead to inhibition could be that in principle they might themselves be words; in European languages, a syllable can be a word. In Sesotho (a Bantu language), however, a single syllable cannot be a word. We report that in Sesotho, word recognition is inhibited by stranded consonants, but stranded monosyllables produce no more difficulty than stranded bisyllables (which could be Sesotho words). This finding suggests that the viability constraint which inhibits spurious embedded word candidates is not sensitive to language-specific word structure, but is universal.
  • Cutler, A., McQueen, J. M., Norris, D., & Somejuan, A. (2002). Le rôle de la syllable. In E. Dupoux (Ed.), Les langages du cerveau: Textes en l’honneur de Jacques Mehler (pp. 185-197). Paris: Odile Jacob.
  • Norris, D., McQueen, J. M., & Cutler, A. (2002). Bias effects in facilitatory phonological priming. Memory & Cognition, 30(3), 399-411.

    Abstract

    In four experiments, we examined the facilitation that occurs when spoken-word targets rhyme with preceding spoken primes. In Experiment 1, listeners’ lexical decisions were faster to words following rhyming words (e.g., ramp–LAMP) than to words following unrelated primes (e.g., pink–LAMP). No facilitation was observed for nonword targets. Targets that almost rhymed with their primes (foils; e.g., bulk–SULSH) were included in Experiment 2; facilitation for rhyming targets was severely attenuated. Experiments 3 and 4 were single-word shadowing variants of the earlier experiments. There was facilitation for both rhyming words and nonwords; the presence of foils had no significant influence on the priming effect. A major component of the facilitation in lexical decision appears to be strategic: Listeners are biased to say “yes” to targets that rhyme with their primes, unless foils discourage this strategy. The nonstrategic component of phonological facilitation may reflect speech perception processes that operate prior to lexical access.
  • Spinelli, E., Cutler, A., & McQueen, J. M. (2002). Resolution of liaison for lexical access in French. Revue Française de Linguistique Appliquée, 7, 83-96.

    Abstract

    Spoken word recognition involves automatic activation of lexical candidates compatible with the perceived input. In running speech, words abut one another without intervening gaps, and syllable boundaries can mismatch with word boundaries. For instance, liaison in ’petit agneau’ creates a syllable beginning with a consonant although ’agneau’ begins with a vowel. In two cross-modal priming experiments we investigate how French listeners recognise words in liaison environments. These results suggest that the resolution of liaison in part depends on acoustic cues which distinguish liaison from non-liaison consonants, and in part on the availability of lexical support for a liaison interpretation.
  • Cutler, A., & McQueen, J. M. (1995). The recognition of lexical units in speech. In B. De Gelder, & J. Morais (Eds.), Speech and reading: A comparative approach (pp. 33-47). Hove, UK: Erlbaum.
  • Hendriks, H., & McQueen, J. M. (1995). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.16 1995. Nijmegen: MPI for Psycholinguistics.
  • McQueen, J. M., Cutler, A., Briscoe, T., & Norris, D. (1995). Models of continuous speech recognition and the contents of the vocabulary. Language and Cognitive Processes, 10, 309-331. doi:10.1080/01690969508407098.

    Abstract

    Several models of spoken word recognition postulate that recognition is achieved via a process of competition between lexical hypotheses. Competition not only provides a mechanism for isolated word recognition, it also assists in continuous speech recognition, since it offers a means of segmenting continuous input into individual words. We present statistics on the pattern of occurrence of words embedded in the polysyllabic words of the English vocabulary, showing that an overwhelming majority (84%) of polysyllables have shorter words embedded within them. Positional analyses show that these embeddings are most common at the onsets of the longer word. Although both phonological and syntactic constraints could rule out some embedded words, they do not remove the problem. Lexical competition provides a means of dealing with lexical embedding. It is also supported by a growing body of experimental evidence. We present results which indicate that competition operates both between word candidates that begin at the same point in the input and candidates that begin at different points (McQueen, Norris, & Cutler, 1994, Noms, McQueen, & Cutler, in press). We conclude that lexical competition is an essential component in models of continuous speech recognition.
  • Norris, D., McQueen, J. M., & Cutler, A. (1995). Competition and segmentation in spoken word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1209-1228.

    Abstract

    Spoken utterances contain few reliable cues to word boundaries, but listeners nonetheless experience little difficulty identifying words in continuous speech. The authors present data and simulations that suggest that this ability is best accounted for by a model of spoken-word recognition combining competition between alternative lexical candidates and sensitivity to prosodic structure. In a word-spotting experiment, stress pattern effects emerged most clearly when there were many competing lexical candidates for part of the input. Thus, competition between simultaneously active word candidates can modulate the size of prosodic effects, which suggests that spoken-word recognition must be sensitive both to prosodic structure and to the effects of competition. A version of the Shortlist model ( D. G. Norris, 1994b) incorporating the Metrical Segmentation Strategy ( A. Cutler & D. Norris, 1988) accurately simulates the results using a lexicon of more than 25,000 words.

Share this page