Study protocol: A comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning
Background
While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/).
Methods
We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1‐weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning.
Discussion
This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/).
Methods
We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1‐weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning.
Discussion
This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
Share this page