James McQueen

Publications

Displaying 1 - 23 of 23
  • Dai, B., McQueen, J. M., Terporten, R., Hagoort, P., & Kösem, A. (2022). Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. Current Research in Neurobiology, 3: 100043. doi:10.1016/j.crneur.2022.100043.

    Abstract

    Listening to speech is difficult in noisy environments, and is even harder when the interfering noise consists of intelligible speech as compared to unintelligible sounds. This suggests that the competing linguistic information interferes with the neural processing of target speech. Interference could either arise from a degradation of the neural representation of the target speech, or from increased representation of distracting speech that enters in competition with the target speech. We tested these alternative hypotheses using magnetoencephalography (MEG) while participants listened to a target clear speech in the presence of distracting noise-vocoded speech. Crucially, the distractors were initially unintelligible but became more intelligible after a short training session. Results showed that the comprehension of the target speech was poorer after training than before training. The neural tracking of target speech in the delta range (1–4 Hz) reduced in strength in the presence of a more intelligible distractor. In contrast, the neural tracking of distracting signals was not significantly modulated by intelligibility. These results suggest that the presence of distracting speech signals degrades the linguistic representation of target speech carried by delta oscillations.
  • Hintz, F., Voeten, C. C., McQueen, J. M., & Meyer, A. S. (2022). Quantifying the relationships between linguistic experience, general cognitive skills and linguistic processing skills. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 2491-2496). Toronto, Canada: Cognitive Science Society.

    Abstract

    Humans differ greatly in their ability to use language. Contemporary psycholinguistic theories assume that individual differences in language skills arise from variability in linguistic experience and in general cognitive skills. While much previous research has tested the involvement of select verbal and non-verbal variables in select domains of linguistic processing, comprehensive characterizations of the relationships among the skills underlying language use are rare. We contribute to such a research program by re-analyzing a publicly available set of data from 112 young adults tested on 35 behavioral tests. The tests assessed nine key constructs reflecting linguistic processing skills, linguistic experience and general cognitive skills. Correlation and hierarchical clustering analyses of the test scores showed that most of the tests assumed to measure the same construct correlated moderately to strongly and largely clustered together. Furthermore, the results suggest important roles of processing speed in comprehension, and of linguistic experience in production.
  • Menks, W. M., Ekerdt, C., Janzen, G., Kidd, E., Lemhöfer, K., Fernández, G., & McQueen, J. M. (2022). Study protocol: A comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning. BMC Psychology, 10: 169. doi:10.1186/s40359-022-00873-x.

    Abstract

    Background

    While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/).
    Methods

    We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1‐weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning.
    Discussion

    This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
  • Severijnen, G. G. A., Bosker, H. R., & McQueen, J. M. (2022). Acoustic correlates of Dutch lexical stress re-examined: Spectral tilt is not always more reliable than intensity. In S. Frota, M. Cruz, & M. Vigário (Eds.), Proceedings of Speech Prosody 2022 (pp. 278-282). doi:10.21437/SpeechProsody.2022-57.

    Abstract

    The present study examined two acoustic cues in the production
    of lexical stress in Dutch: spectral tilt and overall intensity.
    Sluijter and Van Heuven (1996) reported that spectral tilt is a
    more reliable cue to stress than intensity. However, that study
    included only a small number of talkers (10) and only syllables
    with the vowels /aː/ and /ɔ/.
    The present study re-examined this issue in a larger and
    more variable dataset. We recorded 38 native speakers of Dutch
    (20 females) producing 744 tokens of Dutch segmentally
    overlapping words (e.g., VOORnaam vs. voorNAAM, “first
    name” vs. “respectable”), targeting 10 different vowels, in
    variable sentence contexts. For each syllable, we measured
    overall intensity and spectral tilt following Sluijter and Van
    Heuven (1996).
    Results from Linear Discriminant Analyses showed that,
    for the vowel /aː/ alone, spectral tilt showed an advantage over
    intensity, as evidenced by higher stressed/unstressed syllable
    classification accuracy scores for spectral tilt. However, when
    all vowels were included in the analysis, the advantage
    disappeared.
    These findings confirm that spectral tilt plays a larger role
    in signaling stress in Dutch /aː/ but show that, for a larger
    sample of Dutch vowels, overall intensity and spectral tilt are
    equally important.
  • Strauß, A., Wu, T., McQueen, J. M., Scharenborg, O., & Hintz, F. (2022). The differential roles of lexical and sublexical processing during spoken-word recognition in clear and in noise. Cortex, 151, 70-88. doi:10.1016/j.cortex.2022.02.011.

    Abstract

    Successful spoken-word recognition relies on an interplay between lexical and sublexical processing. Previous research demonstrated that listeners readily shift between more lexically-biased and more sublexically-biased modes of processing in response to the situational context in which language comprehension takes place. Recognizing words in the presence of background noise reduces the perceptual evidence for the speech signal and – compared to the clear – results in greater uncertainty. It has been proposed that, when dealing with greater uncertainty, listeners rely more strongly on sublexical processing. The present study tested this proposal using behavioral and electroencephalography (EEG) measures. We reasoned that such an adjustment would be reflected in changes in the effects of variables predicting recognition performance with loci at lexical and sublexical levels, respectively. We presented native speakers of Dutch with words featuring substantial variability in (1) word frequency (locus at lexical level), (2) phonological neighborhood density (loci at lexical and sublexical levels) and (3) phonotactic probability (locus at sublexical level). Each participant heard each word in noise (presented at one of three signal-to-noise ratios) and in the clear and performed a two-stage lexical decision and transcription task while EEG was recorded. Using linear mixed-effects analyses, we observed behavioral evidence that listeners relied more strongly on sublexical processing when speech quality decreased. Mixed-effects modelling of the EEG signal in the clear condition showed that sublexical effects were reflected in early modulations of ERP components (e.g., within the first 300 ms post word onset). In noise, EEG effects occurred later and involved multiple regions activated in parallel. Taken together, we found evidence – especially in the behavioral data – supporting previous accounts that the presence of background noise induces a stronger reliance on sublexical processing.
  • Bakker-Marshall, I., Takashima, A., Schoffelen, J.-M., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2018). Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 30(5), 621-633. doi:10.1162/jocn_a_01240.

    Abstract

    Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG.
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.

    Abstract

    The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.

    Abstract

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.
  • Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.

    Abstract

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing.
  • Goriot, C., Broersma, M., McQueen, J. M., Unsworth, S., & Van Hout, R. (2018). Language balance and switching ability in children acquiring English as a second language. Journal of Experimental Child Psychology, 173, 168-186. doi:10.1016/j.jecp.2018.03.019.

    Abstract

    This study investigated whether relative lexical proficiency in Dutch and English in child second language (L2) learners is related to executive functioning. Participants were Dutch primary school pupils of three different age groups (4–5, 8–9, and 11–12 years) who either were enrolled in an early-English schooling program or were age-matched controls not on that early-English program. Participants performed tasks that measured switching, inhibition, and working memory. Early-English program pupils had greater knowledge of English vocabulary and more balanced Dutch–English lexicons. In both groups, lexical balance, a ratio measure obtained by dividing vocabulary scores in English by those in Dutch, was related to switching but not to inhibition or working memory performance. These results show that for children who are learning an L2 in an instructional setting, and for whom managing two languages is not yet an automatized process, language balance may be more important than L2 proficiency in influencing the relation between childhood bilingualism and switching abilities.
  • Mitterer, H., Reinisch, E., & McQueen, J. M. (2018). Allophones, not phonemes in spoken-word recognition. Journal of Memory and Language, 98, 77-92. doi:10.1016/j.jml.2017.09.005.

    Abstract

    What are the phonological representations that listeners use to map information about the segmental content of speech onto the mental lexicon during spoken-word recognition? Recent evidence from perceptual-learning paradigms seems to support (context-dependent) allophones as the basic representational units in spoken-word recognition. But recent evidence from a selective-adaptation paradigm seems to suggest that context-independent phonemes also play a role. We present three experiments using selective adaptation that constitute strong tests of these representational hypotheses. In Experiment 1, we tested generalization of selective adaptation using different allophones of Dutch /r/ and /l/ – a case where generalization has not been found with perceptual learning. In Experiments 2 and 3, we tested generalization of selective adaptation using German back fricatives in which allophonic and phonemic identity were varied orthogonally. In all three experiments, selective adaptation was observed only if adaptors and test stimuli shared allophones. Phonemic identity, in contrast, was neither necessary nor sufficient for generalization of selective adaptation to occur. These findings and other recent data using the perceptual-learning paradigm suggest that pre-lexical processing during spoken-word recognition is based on allophones, and not on context-independent phonemes
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Thorin, J., Sadakata, M., Desain, P., & McQueen, J. M. (2018). Perception and production in interaction during non-native speech category learning. The Journal of the Acoustical Society of America, 144(1), 92-103. doi:10.1121/1.5044415.

    Abstract

    Establishing non-native phoneme categories can be a notoriously difficult endeavour—in both speech perception and speech production. This study asks how these two domains interact in the course of this learning process. It investigates the effect of perceptual learning and related production practice of a challenging non-native category on the perception and/or production of that category. A four-day perceptual training protocol on the British English /æ/-/ɛ/ vowel contrast was combined with either related or unrelated production practice. After feedback on perceptual categorisation of the contrast, native Dutch participants in the related production group (N = 19) pronounced the trial's correct answer, while participants in the unrelated production group (N = 19) pronounced similar but phonologically unrelated words. Comparison of pre- and post-tests showed significant improvement over the course of training in both perception and production, but no differences between the groups were found. The lack of an effect of production practice is discussed in the light of previous, competing results and models of second-language speech perception and production. This study confirms that, even in the context of related production practice, perceptual training boosts production learning.
  • Viebahn, M., McQueen, J. M., Ernestus, M., Frauenfelder, U. H., & Bürki, A. (2018). How much does orthography influence the processing of reduced word forms? Evidence from novel-word learning about French schwa deletion. The Quarterly Journal of Experimental Psychology, 71(11), 2378-2394. doi:10.1177/1747021817741859.

    Abstract

    This study examines the influence of orthography on the processing of reduced word forms. For this purpose, we compared the impact of phonological variation with the impact of spelling-sound consistency on the processing of words that may be produced with or without the vowel schwa. Participants learnt novel French words in which the vowel schwa was present or absent in the first syllable. In Experiment 1, the words were consistently produced without schwa or produced in a variable manner (i.e., sometimes produced with and sometimes produced without schwa). In Experiment 2, words were always produced in a consistent manner, but an orthographic exposure phase was included in which words that were produced without schwa were either spelled with or without the letter . Results from naming and eye-tracking tasks suggest that both phonological variation and spelling-sound consistency influence the processing of spoken novel words. However, the influence of phonological variation outweighs the effect of spelling-sound consistency. Our findings therefore suggest that the influence of orthography on the processing of reduced word forms is relatively small.
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).

Share this page