Displaying 101 - 146 of 146
  • Kung, C. (2018). Speech comprehension in a tone language: The role of lexical tone, context, and intonation in Cantonese-Chinese. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2018). Mammalian models for the study of vocal learning: A new paradigm in bats. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 235-237). Toruń, Poland: NCU Press. doi:10.12775/3991-1.056.
  • Lattenkamp, E. Z., & Vernes, S. C. (2018). Vocal learning: A language-relevant trait in need of a broad cross-species approach. Current Opinion in Behavioral Sciences, 21, 209-215. doi:10.1016/j.cobeha.2018.04.007.

    Abstract

    Although humans are unmatched in their capacity to produce
    speech and learn language, comparative approaches in diverse
    animalmodelsareabletoshedlightonthebiologicalunderpinnings
    of language-relevant traits. In the study of vocal learning, a trait
    crucial for spoken language, passerine birds have been the
    dominant models, driving invaluable progress in understanding the
    neurobiology and genetics of vocal learning despite being only
    distantly related to humans. To date, there is sparse evidence that
    our closest relatives, nonhuman primates have the capability to
    learn new vocalisations. However, a number of other mammals
    have shown the capacity for vocal learning, such as some
    cetaceans, pinnipeds, elephants, and bats, and we anticipate that
    with further study more species will gain membership to this
    (currently) select club. A broad, cross-species comparison of vocal
    learning, coupled with careful consideration of the components
    underlying this trait, is crucial to determine how human speech and
    spoken language is biologically encoded and how it evolved. We
    emphasise the need to draw on the pool of promising species that
    havethusfarbeenunderstudiedorneglected.Thisisbynomeansa
    call for fewer studies in songbirds, or an unfocused treasure-hunt,
    but rather an appeal for structured comparisons across a range of
    species, considering phylogenetic relationships, ecological and
    morphological constrains, developmental and social factors, and
    neurogenetic underpinnings. Herein, we promote a comparative
    approachhighlightingtheimportanceofstudyingvocallearningina
    broad range of model species, and describe a common framework
    for targeted cross-taxon studies to shed light on the biology and
    evolution of vocal learning.
  • Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2018). Volitional control of social vocalisations and vocal usage learning in bats. Journal of Experimental Biology, 221(14): jeb.180729. doi:10.1242/jeb.180729.

    Abstract

    Bats are gregarious, highly vocal animals that possess a broad repertoire of social vocalisations. For in-depth studies of their vocal behaviours, including vocal flexibility and vocal learning, it is necessary to gather repeatable evidence from controlled laboratory experiments on isolated individuals. However, such studies are rare for one simple reason: eliciting social calls in isolation and under operant control is challenging and has rarely been achieved. To overcome this limitation, we designed an automated setup that allows conditioning of social vocalisations in a new context, and tracks spectro-temporal changes in the recorded calls over time. Using this setup, we were able to reliably evoke social calls from temporarily isolated lesser spear-nosed bats (Phyllostomus discolor). When we adjusted the call criteria that could result in food reward, bats responded by adjusting temporal and spectral call parameters. This was achieved without the help of an auditory template or social context to direct the bats. Our results demonstrate vocal flexibility and vocal usage learning in bats. Our setup provides a new paradigm that allows the controlled study of the production and learning of social vocalisations in isolated bats, overcoming limitations that have, until now, prevented in-depth studies of these behaviours.

    Additional information

    JEB180729supp.pdf
  • Lefever, E., Hendrickx, I., Croijmans, I., Van den Bosch, A., & Majid, A. (2018). Discovering the language of wine reviews: A text mining account. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. 3297-3302). Paris: LREC.

    Abstract

    It is widely held that smells and flavors are impossible to put into words. In this paper we test this claim by seeking predictive patterns in wine reviews, which ostensibly aim to provide guides to perceptual content. Wine reviews have previously been critiqued as random and meaningless. We collected an English corpus of wine reviews with their structured metadata, and applied machine learning techniques to automatically predict the wine's color, grape variety, and country of origin. To train the three supervised classifiers, three different information sources were incorporated: lexical bag-of-words features, domain-specific terminology features, and semantic word embedding features. In addition, using regression analysis we investigated basic review properties, i.e., review length, average word length, and their relationship to the scalar values of price and review score. Our results show that wine experts do share a common vocabulary to describe wines and they use this in a consistent way, which makes it possible to automatically predict wine characteristics based on the review text alone. This means that odors and flavors may be more expressible in language than typically acknowledged.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Lupyan, G., Wendorf, A., Berscia, L. M., & Paul, J. (2018). Core knowledge or language-augmented cognition? The case of geometric reasoning. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 252-254). Toruń, Poland: NCU Press. doi:10.12775/3991-1.062.
  • Lutzenberger, H. (2018). Manual and nonmanual features of name signs in Kata Kolok and sign language of the Netherlands. Sign Language Studies, 18(4), 546-569. doi:10.1353/sls.2018.0016.

    Abstract

    Name signs are based on descriptions, initialization, and loan translations. Nyst and Baker (2003) have found crosslinguistic similarities in the phonology of name signs, such as a preference for one-handed signs and for the head location. Studying Kata Kolok (KK), a rural sign language without indigenous fingerspelling, strongly suggests that one-handedness is not correlated to initialization, but represents a more general feature of name sign phonology. Like in other sign languages, the head location is used frequently in both KK and Sign Language of the Netherlands (NGT) name signs. The use of nonmanuals, however, is strikingly different. NGT name signs are always accompanied by mouthings, which are absent in KK. Instead, KK name signs may use mouth gestures; these may disambiguate manually identical name signs, and even form independent name signs without any manual features
  • Mainz, N. (2018). Vocabulary knowledge and learning: Individual differences in adult native speakers. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Mamus, E., & Karadöller, D. Z. (2018). Anıları Zihinde Canlandırma [Imagery in autobiographical memories]. In S. Gülgöz, B. Ece, & S. Öner (Eds.), Hayatı Hatırlamak: Otobiyografik Belleğe Bilimsel Yaklaşımlar [Remembering Life: Scientific Approaches to Autobiographical Memory] (pp. 185-200). Istanbul, Turkey: Koç University Press.
  • Merkx, D., & Scharenborg, O. (2018). Articulatory feature classification using convolutional neural networks. In Proceedings of Interspeech 2018 (pp. 2142-2146). doi:10.21437/Interspeech.2018-2275.

    Abstract

    The ultimate goal of our research is to improve an existing speech-based computational model of human speech recognition on the task of simulating the role of fine-grained phonetic information in human speech processing. As part of this work we are investigating articulatory feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. Articulatory feature (AF) modelling of speech has received a considerable amount of attention in automatic speech recognition research. Different approaches have been used to build AF classifiers, most notably multi-layer perceptrons. Recently, deep neural networks have been applied to the task of AF classification. This paper aims to improve AF classification by investigating two different approaches: 1) investigating the usefulness of a deep Convolutional neural network (CNN) for AF classification; 2) integrating the Mel filtering operation into the CNN architecture. The results showed a remarkable improvement in classification accuracy of the CNNs over state-of-the-art AF classification results for Dutch, most notably in the minority classes. Integrating the Mel filtering operation into the CNN architecture did not further improve classification performance.
  • Mostert, P., Albers, A. M., Brinkman, L., Todorova, L., Kok, P., & De Lange, F. P. (2018). Eye movement-related confounds in neural decoding of visual working memory representations. eNeuro, 5(4): ENEURO.0401-17.2018. doi:10.1523/ENEURO.0401-17.2018.

    Abstract

    A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds.
  • Ostarek, M. (2018). Envisioning language: An exploration of perceptual processes in language comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Ostarek, M., Ishag, I., Joosen, D., & Huettig, F. (2018). Saccade trajectories reveal dynamic interactions of semantic and spatial information during the processing of implicitly spatial words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(10), 1658-1670. doi:10.1037/xlm0000536.

    Abstract

    Implicit up/down words, such as bird and foot, systematically influence performance on visual tasks involving immediately following targets in compatible vs. incompatible locations. Recent studies have observed that the semantic relation between prime words and target pictures can strongly influence the size and even the direction of the effect: Semantically related targets are processed faster in congruent vs. incongruent locations (location-specific priming), whereas unrelated targets are processed slower in congruent locations. Here, we used eye-tracking to investigate the moment-to-moment processes underlying this pattern. Our reaction time results for related targets replicated the location-specific priming effect and showed a trend towards interference for unrelated targets. We then used growth curve analysis to test how up/down words and their match vs. mismatch with immediately following targets in terms of semantics and vertical location influences concurrent saccadic eye movements. There was a strong main effect of spatial association on linear growth with up words biasing changes in y-coordinates over time upwards relative to down words (and vice versa). Similar to the RT data, this effect was strongest for semantically related targets and reversed for unrelated targets. Intriguingly, all conditions showed a bias in the congruent direction in the initial stage of the saccade. Then, at around halfway into the saccade the effect kept increasing in the semantically related condition, and reversed in the unrelated condition. These results suggest that online processing of up/down words triggers direction-specific oculomotor processes that are dynamically modulated by the semantic relation between prime words and targets.
  • Piepers, J., & Redl, T. (2018). Gender-mismatching pronouns in context: The interpretation of possessive pronouns in Dutch and Limburgian. In B. Le Bruyn, & J. Berns (Eds.), Linguistics in the Netherlands 2018 (pp. 97-110). Amsterdam: Benjamins.

    Abstract

    Gender-(mis)matching pronouns have been studied extensively in experiments. However, a phenomenon common to various languages has thus far been overlooked: the systemic use of non-feminine pronouns when referring to female individuals. The present study is the first to provide experimental insights into the interpretation of such a pronoun: Limburgian zien ‘his/its’ and Dutch zijn ‘his/its’ are grammatically ambiguous between masculine and neuter, but while Limburgian zien can refer to women, the Dutch equivalent zijn cannot. Employing an acceptability judgment task, we presented speakers of Limburgian (N = 51) with recordings of sentences in Limburgian featuring zien, and speakers of Dutch (N = 52) with Dutch translations of these sentences featuring zijn. All sentences featured a potential male or female antecedent embedded in a stereotypically male or female context. We found that ratings were higher for sentences in which the pronoun could refer back to the antecedent. For Limburgians, this extended to sentences mentioning female individuals. Context further modulated sentence appreciation. Possible mechanisms regarding the interpretation of zien as coreferential with a female individual will be discussed.
  • Popov, V., Ostarek, M., & Tenison, C. (2018). Practices and pitfalls in inferring neural representations. NeuroImage, 174, 340-351. doi:10.1016/j.neuroimage.2018.03.041.

    Abstract

    A key challenge for cognitive neuroscience is deciphering the representational schemes of the brain. Stimulus-feature-based encoding models are becoming increasingly popular for inferring the dimensions of neural representational spaces from stimulus-feature spaces. We argue that such inferences are not always valid because successful prediction can occur even if the two representational spaces use different, but correlated, representational schemes. We support this claim with three simulations in which we achieved high prediction accuracy despite systematic differences in the geometries and dimensions of the underlying representations. Detailed analysis of the encoding models' predictions showed systematic deviations from ground-truth, indicating that high prediction accuracy is insufficient for making representational inferences. This fallacy applies to the prediction of actual neural patterns from stimulus-feature spaces and we urge caution in inferring the nature of the neural code from such methods. We discuss ways to overcome these inferential limitations, including model comparison, absolute model performance, visualization techniques and attentional modulation.
  • Raviv, L., & Arnon, I. (2018). Systematicity, but not compositionality: Examining the emergence of linguistic structure in children and adults using iterated learning. Cognition, 181, 160-173. doi:10.1016/j.cognition.2018.08.011.

    Abstract

    Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date no published study has demonstrated a similar emergence of linguistic structure in children. The lack of evidence from child learners constitutes a problematic
    2
    gap in the literature: if such learning biases impact the emergence of linguistic structure, they should also be found in children, who are the primary learners in real-life language transmission. However, children may differ from adults in their biases given age-related differences in general cognitive skills. Moreover, adults’ performance on iterated learning tasks may reflect existing (and explicit) linguistic biases, partially undermining the generality of the results. Examining children’s performance can also help evaluate contrasting predictions about their role in emerging languages: do children play a larger or smaller role than adults in the creation of structure? Here, we report a series of four iterated artificial language learning studies (based on Kirby, Cornish & Smith, 2008) with both children and adults, using a novel child-friendly paradigm. Our results show that linguistic structure does not emerge more readily in children compared to adults, and that adults are overall better in both language learning and in creating linguistic structure. When languages could become underspecified (by allowing homonyms), children and adults were similar in developing consistent mappings between meanings and signals in the form of structured ambiguities. However, when homonimity was not allowed, only adults created compositional structure. This study is a first step in using iterated language learning paradigms to explore child-adult differences. It provides the first demonstration that cultural transmission has a different effect on the languages produced by children and adults: While children were able to develop systematicity, their languages did not show compositionality. We focus on the relation between learning and structure creation as a possible explanation for our findings and discuss implications for children’s role in the emergence of linguistic structure.

    Additional information

    results A results B results D stimuli
  • Raviv, L., & Arnon, I. (2018). The developmental trajectory of children’s auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4): e12593. doi:10.1111/desc.12593.

    Abstract

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5–12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw.

    Additional information

    Video abstract of the article
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2018). The role of community size in the emergence of linguistic structure. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 402-404). Toruń, Poland: NCU Press. doi:10.12775/3991-1.096.
  • Redl, T., Eerland, A., & Sanders, T. J. M. (2018). The processing of the Dutch masculine generic zijn ‘his’ across stereotype contexts: An eye-tracking study. PLoS One, 13(10): e0205903. doi:10.1371/journal.pone.0205903.

    Abstract

    Language users often infer a person’s gender when it is not explicitly mentioned. This information is included in the mental model of the described situation, giving rise to expectations regarding the continuation of the discourse. Such gender inferences can be based on two types of information: gender stereotypes (e.g., nurses are female) and masculine generics, which are grammatically masculine word forms that are used to refer to all genders in certain contexts (e.g., To each his own). In this eye-tracking experiment (N = 82), which is the first to systematically investigate the online processing of masculine generic pronouns, we tested whether the frequently used Dutch masculine generic zijn ‘his’ leads to a male bias. In addition, we tested the effect of context by introducing male, female, and neutral stereotypes. We found no evidence for the hypothesis that the generically-intended masculine pronoun zijn ‘his’ results in a male bias. However, we found an effect of stereotype context. After introducing a female stereotype, reading about a man led to an increase in processing time. However, the reverse did not hold, which parallels the finding in social psychology that men are penalized more for gender-nonconforming behavior. This suggests that language processing is not only affected by the strength of stereotype contexts; the associated disapproval of violating these gender stereotypes affects language processing, too.

    Additional information

    pone.0205903.s001.pdf data files
  • Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 191, 124-130. doi:10.1016/j.actpsy.2018.09.008.

    Abstract

    It is unclear whether cognitive and motor control are parallel and interactive or serial and independent processes. According to one view, cognitive control refers to a set of modality-nonspecific processes that act on supramodal representations and precede response modality-specific motor processes. An alternative view is that cognitive control represents a set of modality-specific operations that act directly on motor-related representations, implying dependence of cognitive control on motor control. Here, we examined the influence of response modality (vocal vs. manual) on three well-established subcomponent processes of cognitive control: shifting, inhibiting, and updating. We observed effects of all subcomponent processes in reaction times. The magnitude of these effects did not differ between response modalities for shifting and inhibiting, in line with a serial, supramodal view. However, the magnitude of the updating effect differed between modalities, in line with an interactive, modality-specific view. These results suggest that updating represents a modality-specific operation that depends on motor control, whereas shifting and inhibiting represent supramodal operations that act independently of motor control.
  • Scharenborg, O., & Merkx, D. (2018). The role of articulatory feature representation quality in a computational model of human spoken-word recognition. In Proceedings of the Machine Learning in Speech and Language Processing Workshop (MLSLP 2018).

    Abstract

    Fine-Tracker is a speech-based model of human speech
    recognition. While previous work has shown that Fine-Tracker
    is successful at modelling aspects of human spoken-word
    recognition, its speech recognition performance is not
    comparable to that of human performance, possibly due to
    suboptimal intermediate articulatory feature (AF)
    representations. This study investigates the effect of improved
    AF representations, obtained using a state-of-the-art deep
    convolutional network, on Fine-Tracker’s simulation and
    recognition performance: Although the improved AF quality
    resulted in improved speech recognition; it, surprisingly, did
    not lead to an improvement in Fine-Tracker’s simulation power.
  • Schoenmakers, G.-J., & Piepers, J. (2018). Echter kan het wel. Levende Talen Magazine, 105(4), 10-13.
  • Shitova, N. (2018). Electrophysiology of competition and adjustment in word and phrase production. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Sikora, K. (2018). Executive control in language production by adults and children with and without language impairment. PhD Thesis, Radboud University, Nijmegen, The Netherlands.

    Abstract

    The present study examined how the updating, inhibiting, and shifting abilities underlying executive control influence spoken noun-phrase production. Previous studies provided evidence that updating and inhibiting, but not shifting, influence picture naming response time (RT). However, little is known about the role of executive control in more complex forms of language production like generating phrases. We assessed noun-phrase production using picture description and a picture-word interference procedure. We measured picture description RT to assess length, distractor, and switch effects, which were assumed to reflect, respectively, the updating, inhibiting, and shifting abilities of adult participants. Moreover, for each participant we obtained scores on executive control tasks that measured verbal and nonverbal updating, nonverbal inhibiting, and nonverbal shifting. We found that both verbal and nonverbal updating scores correlated with the overall mean picture description RTs. Furthermore, the length effect in the RTs correlated with verbal but not nonverbal updating scores, while the distractor effect correlated with inhibiting scores. We did not find a correlation between the switch effect in the mean RTs and the shifting scores. However, the shifting scores correlated with the switch effect in the normal part of the underlying RT distribution. These results suggest that updating, inhibiting, and shifting each influence the speed of phrase production, thereby demonstrating a contribution of all three executive control abilities to language production.

    Additional information

    full text via Radboud Repository
  • Sikora, K., & Roelofs, A. (2018). Switching between spoken language-production tasks: the role of attentional inhibition and enhancement. Language, Cognition and Neuroscience, 33(7), 912-922. doi:10.1080/23273798.2018.1433864.

    Abstract

    Since Pillsbury [1908. Attention. London: Swan Sonnenschein & Co], the issue of whether attention operates through inhibition or enhancement has been on the scientific agenda. We examined whether overcoming previous attentional inhibition or enhancement is the source of asymmetrical switch costs in spoken noun-phrase production and colour-word Stroop tasks. In Experiment 1, using bivalent stimuli, we found asymmetrical costs in response times for switching between long and short phrases and between Stroop colour naming and reading. However, in Experiment 2, using bivalent stimuli for the weaker tasks (long phrases, colour naming) and univalent stimuli for the stronger tasks (short phrases, word reading), we obtained an asymmetrical switch cost for phrase production, but a symmetrical cost for Stroop. The switch cost evidence was quantified using Bayesian statistical analyses. Our findings suggest that switching between phrase types involves inhibition, whereas switching between colour naming and reading involves enhancement. Thus, the attentional mechanism depends on the language-production task involved. The results challenge theories of task switching that assume only one attentional mechanism, inhibition or enhancement, rather than both mechanisms.
  • Stoehr, A., Benders, T., Van Hell, J. G., & Fikkert, P. (2018). Heritage language exposure impacts voice onset time of Dutch–German simultaneous bilingual preschoolers. Bilingualism: Language and Cognition, 21(3), 598-617. doi:10.1017/S1366728917000116.

    Abstract

    This study assesses the effects of age and language exposure on VOT production in 29 simultaneous bilingual children aged 3;7 to 5;11 who speak German as a heritage language in the Netherlands. Dutch and German have a binary voicing contrast, but the contrast is implemented with different VOT values in the two languages. The results suggest that bilingual children produce ‘voiced’ plosives similarly in their two languages, and these productions are not monolingual-like in either language. Bidirectional cross-linguistic influence between Dutch and German can explain these results. Yet, the bilinguals seemingly have two autonomous categories for Dutch and German ‘voiceless’ plosives. In German, the bilinguals’ aspiration is not monolingual-like, but bilinguals with more heritage language exposure produce more target-like aspiration. Importantly, the amount of exposure to German has no effect on the majority language's ‘voiceless’ category. This implies that more heritage language exposure is associated with more language-specific voicing systems.
  • Stoehr, A. (2018). Speech production, perception, and input of simultaneous bilingual preschoolers: Evidence from voice onset time. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Thorin, J., Sadakata, M., Desain, P., & McQueen, J. M. (2018). Perception and production in interaction during non-native speech category learning. The Journal of the Acoustical Society of America, 144(1), 92-103. doi:10.1121/1.5044415.

    Abstract

    Establishing non-native phoneme categories can be a notoriously difficult endeavour—in both speech perception and speech production. This study asks how these two domains interact in the course of this learning process. It investigates the effect of perceptual learning and related production practice of a challenging non-native category on the perception and/or production of that category. A four-day perceptual training protocol on the British English /æ/-/ɛ/ vowel contrast was combined with either related or unrelated production practice. After feedback on perceptual categorisation of the contrast, native Dutch participants in the related production group (N = 19) pronounced the trial's correct answer, while participants in the unrelated production group (N = 19) pronounced similar but phonologically unrelated words. Comparison of pre- and post-tests showed significant improvement over the course of training in both perception and production, but no differences between the groups were found. The lack of an effect of production practice is discussed in the light of previous, competing results and models of second-language speech perception and production. This study confirms that, even in the context of related production practice, perceptual training boosts production learning.
  • Tribushinina, E., Mak, M., Dubinkina, E., & Mak, W. M. (2018). Adjective production by Russian-speaking children with developmental language disorder and Dutch–Russian simultaneous bilinguals: Disentangling the profiles. Applied Psycholinguistics, 39(5), 1033-1064. doi:10.1017/S0142716418000115.

    Abstract

    Bilingual children with reduced exposure to one or both languages may have language profiles that are
    apparently similar to those of children with developmental language disorder (DLD). Children with
    DLD receive enough input, but have difficulty using this input for acquisition due to processing deficits.
    The present investigation aims to determine aspects of adjective production that are differentially
    affected by reduced input (in bilingualism) and reduced intake (in DLD). Adjectives were elicited
    from Dutch–Russian simultaneous bilinguals with limited exposure to Russian and Russian-speaking
    monolinguals with andwithout DLD.Anantonymelicitation taskwas used to assess the size of adjective
    vocabularies, and a degree task was employed to compare the preferences of the three groups in the
    use of morphological, lexical, and syntactic degree markers. The results revealed that adjective–noun
    agreement is affected to the same extent by both reduced input and reduced intake. The size of adjective
    lexicons is also negatively affected by both, but more so by reduced exposure. However, production
    of morphological degree markers and learning of semantic paradigms are areas of relative strength in
    which bilinguals outperform monolingual children with DLD.We suggest that reduced input might be
    counterbalanced by linguistic and cognitive advantages of bilingualism
  • Tromp, J. (2018). Indirect request comprehension in different contexts. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.

    Abstract

    When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings.
  • Trompenaars, T. (2018). Empathy for the inanimate. Linguistics in the Netherlands, 35, 125-138. doi:10.1075/avt.00009.tro.

    Abstract

    Narrative fiction may invite us to share the perspective of characters which are very much unlike ourselves. Inanimate objects featuring as protagonists or narrators are an extreme example of this. The way readers experience these characters was examined by means of a narrative immersion study. Participants (N = 200) judged narratives containing animate or inanimate characters in predominantly Agent or Experiencer roles. Narratives with inanimate characters were judged to be less emotionally engaging. This effect was influenced by the dominant thematic role associated with the character: inanimate Agents led to more defamiliarization compared to their animate counterparts than inanimate Experiencers. I argue for an integrated account of thematic roles and animacy in literary experience and linguistics in general.
  • Trompenaars, T., Hogeweg, L., Stoop, W., & De Hoop, H. (2018). The language of an inanimate narrator. Open Linguistics, 4, 707-721. doi:10.1515/opli-2018-0034.

    Abstract

    We show by means of a corpus study that the language used by the inanimate first person narrator in the novel Specht en zoon deviates from what we would expect on the basis of the fact that the narrator is inanimate, but at the same time also differsfrom the language of a human narrator in the novel De wijde blik on several linguistic dimensions. Whereas the human narrator is associated strongly with action verbs, preferring the Agent role, the inanimate narrator is much more limited to the Experiencer role, predominantly associated with cognition and sensory verbs. Our results show that animacy as a linguistic concept may be refined by taking into account the myriad ways in which an entity’s conceptual animacy may be expressed: we accept the conceptual animacy of the inanimate narrator despite its inability to act on its environment, showing this need not be a requirement for animacy
  • Trujillo, J. P., Simanova, I., Bekkering, H., & Ozyurek, A. (2018). Communicative intent modulates production and perception of actions and gestures: A Kinect study. Cognition, 180, 38-51. doi:10.1016/j.cognition.2018.04.003.

    Abstract

    Actions may be used to directly act on the world around us, or as a means of communication. Effective communication requires the addressee to recognize the act as being communicative. Humans are sensitive to ostensive communicative cues, such as direct eye gaze (Csibra & Gergely, 2009). However, there may be additional cues present in the action or gesture itself. Here we investigate features that characterize the initiation of a communicative interaction in both production and comprehension.

    We asked 40 participants to perform 31 pairs of object-directed actions and representational gestures in more- or less- communicative contexts. Data were collected using motion capture technology for kinematics and video recording for eye-gaze. With these data, we focused on two issues. First, if and how actions and gestures are systematically modulated when performed in a communicative context. Second, if observers exploit such kinematic information to classify an act as communicative.

    Our study showed that during production the communicative context modulates space–time dimensions of kinematics and elicits an increase in addressee-directed eye-gaze. Naïve participants detected communicative intent in actions and gestures preferentially using eye-gaze information, only utilizing kinematic information when eye-gaze was unavailable.

    Our study highlights the general communicative modulation of action and gesture kinematics during production but also shows that addressees only exploit this modulation to recognize communicative intention in the absence of eye-gaze. We discuss these findings in terms of distinctive but potentially overlapping functions of addressee directed eye-gaze and kinematic modulations within the wider context of human communication and learning.
  • Ung, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K. and 7 moreUng, D. C., Iacono, G., Méziane, H., Blanchard, E., Papon, M.-A., Selten, M., van Rhijn, J.-R., Van Rhijn, J. R., Montjean, R., Rucci, J., Martin, S., Fleet, A., Birling, M.-C., Marouillat, S., Roepman, R., Selloum, M., Lux, A., Thépault, R.-A., Hamel, P., Mittal, K., Vincent, J. B., Dorseuil, O., Stunnenberg, H. G., Billuart, P., Nadif Kasri, N., Hérault, Y., & Laumonnier, F. (2018). Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Molecular Psychiatry, 23, 1356-1367. doi:10.1038/mp.2017.39.

    Abstract

    Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1−/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.

    Additional information

    mp201739x1.pdf
  • Van Rhijn, J. R., Fisher, S. E., Vernes, S. C., & Nadif Kasri, N. (2018). Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 223(9), 4211-4226. doi:10.1007/s00429-018-1746-6.

    Abstract

    Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.

    Additional information

    429_2018_1746_MOESM1_ESM.docx
  • Van Campen, A. D., Kunert, R., Van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2018). Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology, 55(3): e13003. doi:10.1111/psyp.13003.

    Abstract

    In the recent literature, the effects of noninvasive neurostimulation on cognitive functioning appear to lack consistency and replicability. We propose that such effects may be concealed unless dedicated, sensitive, and process-specific dependent measures are used. The expression and subsequent suppression of response capture are often studied using conflict tasks. Response-time distribution analyses have been argued to provide specific measures of the susceptibility to make fast impulsive response errors, as well as the proficiency of the selective suppression of these impulses. These measures of response capture and response inhibition are particularly sensitive to experimental manipulations and clinical deficiencies that are typically obfuscated in commonly used overall performance analyses. Recent work using structural and functional imaging techniques links these behavioral outcome measures to the integrity of frontostriatal networks. These studies suggest that the presupplementary motor area (pre-SMA) is linked to the susceptibility to response capture whereas the right inferior frontal cortex (rIFC) is associated with the selective suppression of action impulses. Here, we used repetitive transcranial magnetic stimulation (rTMS) to test the causal involvement of these two cortical areas in response capture and inhibition in the Simon task. Disruption of rIFC function specifically impaired selective suppression of conflicting action tendencies, whereas the anticipated increase of fast impulsive errors after perturbing pre-SMA function was not confirmed. These results provide a proof of principle of the notion that the selection of appropriate dependent measures is perhaps crucial to establish the effects of neurostimulation on specific cognitive functions.
  • Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.

    Abstract

    Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval.
  • Vanlangendonck, F., Willems, R. M., & Hagoort, P. (2018). Taking common ground into account: Specifying the role of the mentalizing network in communicative language production. PLoS One, 13(10): e0202943. doi:10.1371/journal.pone.0202943.
  • De Vos, J., Schriefers, H., Nivard, M. C., & Lemhöfer, K. (2018). A meta‐analysis and meta‐regression of incidental second language word learning from spoken input. Language Learning, 68(4), 906-941. doi:10.1111/lang.12296.

    Abstract

    We meta‐analyzed the effectiveness of incidental second language word learning from spoken input. Our sample contained 105 effect sizes from 32 primary studies employing meaning‐focused word‐learning activities with 1,964 participants with typical cognitive functioning. The random‐effects meta‐analysis yielded a mean effect size of g = 1.05, reflecting generally large vocabulary gains from spoken input in meaning‐focused activities. A meta‐regression with three substantive and two methodological predictors also revealed that adult participants outperformed children in terms of word learning and that interactive learning tasks were more effective than noninteractive ones. Furthermore, learning scores were higher when measured with recognition than with recall tests. Methodologically, the use of a no‐input control group seemed to protect against an overestimation of learning effects, evidenced by smaller effect sizes. Finally, whether a pretest–posttest design was used did not influence effect sizes. All data and the analysis script are publicly available.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx

Share this page