Displaying 1 - 58 of 58
-
Amelink, J., Postema, M., Kong, X., Schijven, D., Carrion Castillo, A., Soheili-Nezhad, S., Sha, Z., Molz, B., Joliot, M., Fisher, S. E., & Francks, C. (2024). Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Communications Biology, 7: 1209. doi:10.1038/s42003-024-06890-3.
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying the genetic architecture of its functional connectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis based on rare, protein-altering variants (frequencies < 1%) suggested 7 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its asymmetry based on both common and rare genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference. -
Bignardi, G., Smit, D. J. A., Vessel, E. A., Trupp, M. D., Ticini, L. F., Fisher, S. E., & Polderman, T. J. C. (2024). Genetic effects on variability in visual aesthetic evaluations are partially shared across visual domains. Communications Biology, 7: 55. doi:10.1038/s42003-023-05710-4.
Abstract
The aesthetic values that individuals place on visual images are formed and shaped over a lifetime. However, whether the formation of visual aesthetic value is solely influenced by environmental exposure is still a matter of debate. Here, we considered differences in aesthetic value emerging across three visual domains: abstract images, scenes, and faces. We examined variability in two major dimensions of ordinary aesthetic experiences: taste-typicality and evaluation-bias. We build on two samples from the Australian Twin Registry where 1547 and 1231 monozygotic and dizygotic twins originally rated visual images belonging to the three domains. Genetic influences explained 26% to 41% of the variance in taste-typicality and evaluation-bias. Multivariate analyses showed that genetic effects were partially shared across visual domains. Results indicate that the heritability of major dimensions of aesthetic evaluations is comparable to that of other complex social traits, albeit lower than for other complex cognitive traits. The exception was taste-typicality for abstract images, for which we found only shared and unique environmental influences. Our study reveals that diverse sources of genetic and environmental variation influence the formation of aesthetic value across distinct visual domains and provides improved metrics to assess inter-individual differences in aesthetic value.Additional information
supplementary information -
Black , M. H., Buitelaar , J., Charman , T., Ecker , C., Gallagher , L., Hens , K., Jones , E., Murphy , D., Sadaka, Y., Schaer , M., St Pourcain, B., Wolke , D., Bonnot-Briey , S., Bougeron , T., & Bölte , S. (2024). A conceptual framework for data harmonization in mental health using the International Classification of Functioning Disability and Health (ICF): An example with the R2D2-MH Consortium. BMJ Mental Health, 27(1): e301283. doi:10.1136/bmjment-2024-301283.
Abstract
Introduction Advancing research and support for neurologically diverse populations requires novel data harmonisation methods that are capable of aligning with contemporary approaches to understanding health and disability.
Objectives We present the International Classification of Functioning, Disability and Health (ICF) as a conceptual framework to support harmonisation of mental health data and present a proof of principle within the Risk and Resilience in Developmental Diversity and Mental Health (R2D2-MH) consortium.
Method 138 measures from various mental health datasets were linked to the ICF following the WHO’s established linking rules.
Findings Findings support the notion that the ICF can assist in the harmonisation of mental health data. The high level of shared ICF codes provides indications of where items may be readily harmonised to develop datasets that may align more readily with contemporary approaches to understanding health and disability. Although the linking process necessarily entails an element of subjectivity, the application of established rules can increase rigour and transparency of the harmonisation process.
Conclusions We present the first steps towards data harmonisation in mental health that is compatible with contemporary approaches in psychiatry, being more capable of capturing diversity and aligning with more transdiagnostic and neurodiversity-affirmative ways of understanding data.
Clinical implications Our findings show promise, but future work is needed to address quantitative harmonisation. Similarly, issues related to the traditionally ‘pathophysiological’ frameworks that existing datasets are often embedded in can hinder the full potential of harmonisation based on the ICF.Additional information
data supplement -
Boen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S. and 96 moreBoen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S., Corvin, A. P., Crespo Facorro, B., Dannlowski, U., David, F. S., De Geus, E. J., De Zubicaray, G. I., Desrivières, S., Doherty, J. L., Donohoe, G., Ehrlich, S., Eising, E., Espeseth, T., Fisher, S. E., Forstner, A. J., Fortaner Uyà, L., Frouin, V., Fukunaga, M., Ge, T., Glahn, D. C., Goltermann, J., Grabe, H. J., Green, M. J., Groenewold, N. A., Grotegerd, D., Hahn, T., Hashimoto, R., Hehir-Kwa, J. Y., Henskens, F. A., Holmes, A. J., Haberg, A. K., Haavik, J., Jacquemont, S., Jansen, A., Jockwitz, C., Jonsson, E. G., Kikuchi, M., Kircher, T., Kumar, K., Le Hellard, S., Leu, C., Linden, D. E., Liu, J., Loughnan, R., Mather, K. A., McMahon, K. L., McRae, A. F., Medland, S. E., Meinert, S., Moreau, C. A., Morris, D. W., Mowry, B. J., Muhleisen, T. W., Nenadić, I., Nöthen, M. M., Nyberg, L., Owen, M. J., Paolini, M., Paus, T., Pausova, Z., Persson, K., Quidé, Y., Reis Marques, T., Sachdev, P. S., Sando, S. B., Schall, U., Scott, R. J., Selbæk, G., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Stein, F., Stein, D. J., Straube, B., Streit, F., Strike, L. T., Teumer, A., Teutenberg, L., Thalamuthu, A., Tooney, P. A., Tordesillas-Gutierrez, D., Trollor, J. N., Van 't Ent, D., Van den Bree, M. B. M., Van Haren, N. E. M., Vazquez-Bourgon, J., Volzke, H., Wen, W., Wittfeld, K., Ching, C. R., Westlye, L. T., Thompson, P. M., Bearden, C. E., Selmer, K. K., Alnæs, D., Andreassen, O. A., & Sonderby, I. E. (2024). Beyond the global brain differences: Intra-individual variability differences in 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers. Biological Psychiatry, 95(2), 147-160. doi:10.1016/j.biopsych.2023.08.018.
Abstract
Background
The 1q21.1 distal and 15q11.2 BP1-BP2 CNVs exhibit regional and global brain differences compared to non-carriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intra-individual variability measures can be used to test for regional differences beyond global differences in brain structure.
Methods
Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n=30) and duplication (n=27), and 15q11.2 BP1-BP2 deletion (n=170) and duplication (n=243) carriers and matched non-carriers (n=2,350). Regional intra-deviation (RID) scores i.e., the standardized difference between an individual’s regional difference and global difference, were used to test for regional differences that diverge from the global difference.
Results
For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate and temporal pole differed less, and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex and temporal pole differed less, and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness.
Conclusion
We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 CNVs. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs, with the potential to increase our understanding of mechanisms involved in altered neurodevelopment.Additional information
supplementary material -
Cheung, C.-Y., Kirby, S., & Raviv, L. (2024). The role of gender, social bias and personality traits in shaping linguistic accommodation: An experimental approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 80-82). Nijmegen: The Evolution of Language Conferences. doi:10.17617/2.3587960. -
Cornelis, S. S., IntHout, J., Runhart, E. H., Grunewald, O., Lin, S., Corradi, Z., Khan, M., Hitti-Malin, R. J., Whelan, L., Farrar, G. J., Sharon, D., Van den Born, L. I., Arno, G., Simcoe, M., Michaelides, M., Webster, A. R., Roosing, S., Mahroo, O. A., Dhaenens, C.-M., Cremers, F. P. M. Cornelis, S. S., IntHout, J., Runhart, E. H., Grunewald, O., Lin, S., Corradi, Z., Khan, M., Hitti-Malin, R. J., Whelan, L., Farrar, G. J., Sharon, D., Van den Born, L. I., Arno, G., Simcoe, M., Michaelides, M., Webster, A. R., Roosing, S., Mahroo, O. A., Dhaenens, C.-M., Cremers, F. P. M., & ABCA4 Study Group (2024). Representation of women among individuals with mild variants in ABCA4-associated retinopathy: A meta-analysis. JAMA Ophthalmology, 142(5), 463-471. doi:10.1001/jamaophthalmol.2024.0660.
Abstract
Importance
Previous studies indicated that female sex might be a modifier in Stargardt disease, which is an ABCA4-associated retinopathy.
Objective
To investigate whether women are overrepresented among individuals with ABCA4-associated retinopathy who are carrying at least 1 mild allele or carrying nonmild alleles.
Data Sources
Literature data, data from 2 European centers, and a new study. Data from a Radboudumc database and from the Rotterdam Eye Hospital were used for exploratory hypothesis testing.
Study Selection
Studies investigating the sex ratio in individuals with ABCA4-AR and data from centers that collected ABCA4 variant and sex data. The literature search was performed on February 1, 2023; data from the centers were from before 2023.
Data Extraction and Synthesis
Random-effects meta-analyses were conducted to test whether the proportions of women among individuals with ABCA4-associated retinopathy with mild and nonmild variants differed from 0.5, including subgroup analyses for mild alleles. Sensitivity analyses were performed excluding data with possibly incomplete variant identification. χ2 Tests were conducted to compare the proportions of women in adult-onset autosomal non–ABCA4-associated retinopathy and adult-onset ABCA4-associated retinopathy and to investigate if women with suspected ABCA4-associated retinopathy are more likely to obtain a genetic diagnosis. Data analyses were performed from March to October 2023.
Main Outcomes and Measures
Proportion of women per ABCA4-associated retinopathy group. The exploratory testing included sex ratio comparisons for individuals with ABCA4-associated retinopathy vs those with other autosomal retinopathies and for individuals with ABCA4-associated retinopathy who underwent genetic testing vs those who did not.
Results
Women were significantly overrepresented in the mild variant group (proportion, 0.59; 95% CI, 0.56-0.62; P < .001) but not in the nonmild variant group (proportion, 0.50; 95% CI, 0.46-0.54; P = .89). Sensitivity analyses confirmed these results. Subgroup analyses on mild variants showed differences in the proportions of women. Furthermore, in the Radboudumc database, the proportion of adult women among individuals with ABCA4-associated retinopathy (652/1154 = 0.56) was 0.10 (95% CI, 0.05-0.15) higher than among individuals with other retinopathies (280/602 = 0.47).
Conclusions and Relevance
This meta-analysis supports the likelihood that sex is a modifier in developing ABCA4-associated retinopathy for individuals with a mild ABCA4 allele. This finding may be relevant for prognosis predictions and recurrence risks for individuals with ABCA4-associated retinopathy. Future studies should further investigate whether the overrepresentation of women is caused by differences in the disease mechanism, by differences in health care–seeking behavior, or by health care discrimination between women and men with ABCA4-AR. -
Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P. Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P., Conrod, P. J., Crivello, F., Crone, E. A., Dannlowski, U., Davey, C. G., De Haan, L., De Zubicaray, G. I., Di Giorgio, A., Fisch, L., Fisher, S. E., Franke, B., Glahn, D. C., Grotegerd, D., Gruber, O., Gur, R. E., Gur, R. C., Hahn, T., Harrison, B. J., Hatton, S., Hickie, I. B., Hulshoff Pol, H. E., Jamieson, A. J., Jernigan, T. L., Jiang, J., Kalnin, A. J., Kang, S., Kochan, N. A., Kraus, A., Lagopoulos, J., Lazaro, L., McDonald, B. C., McDonald, C., McMahon, K. L., Mwangi, B., Piras, F., Rodriguez‐Cruces, R., Royer, J., Sachdev, P. S., Satterthwaite, T. D., Saykin, A. J., Schumann, G., Sevaggi, P., Smoller, J. W., Soares, J. C., Spalletta, G., Tamnes, C. K., Trollor, J. N., Van't Ent, D., Vecchio, D., Walter, H., Wang, Y., Weber, B., Wen, W., Wierenga, L. M., Williams, S. C. R., Wu, M., Zunta‐Soares, G. B., Bernhardt, B., Thompson, P., Frangou, S., Ge, R., & ENIGMA-Lifespan Working Group (2024). Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size. Human Brain Mapping, 45(10): e26768. doi:10.1002/hbm.26768.
Abstract
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics. -
Dang, A., Raviv, L., & Galke, L. (2024). Testing the linguistic niche hypothesis in large with a multilingual Wug test. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 91-93). Nijmegen: The Evolution of Language Conferences. -
Dang, A., Raviv, L., & Galke, L. (2024). Morphology matters: Probing the cross-linguistic morphological generalization abilities of large language models through a Wug Test. In CMCL 2024 - 13th Edition of the Workshop on Cognitive Modeling and Computational Linguistics, Proceedings of the Workshop (pp. 177-188). Kerrville, TX, USA: Association for Computational Linguistics (ACL).
-
Den Hoed, J., Hashimoto, H., Khan, M., Semmekrot, F., Bosanko, K. A., Abe-Hatano, C., Nakagawa, E., Venselaar, H., Quercia, N., Chad, L., Kurosaka, H., Rondeau, S., Fisher, S. E., Yamamoto, S., & Zarate, Y. A. (2024). Pathogenic SATB2 missense variants affecting p.Gly392 have variable functional implications and result in diverse clinical phenotypes. Journal of Medical Genetics, 61, 1062-1067. doi:10.1136/jmg-2024-110015.
Abstract
SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.
In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2–16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype–phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype–phenotype correlations are needed. -
Eising, E., Vino, A., Mabie, H. L., Campbell, T. F., Shriberg, L. D., & Fisher, S. E. (2024). Genome sequencing of idiopathic speech delay. Human Mutation, 2024: 9692863. doi:10.1155/2024/9692863.
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.Additional information
supplemental table -
Engelen, M. M., Franken, M.-C.-J.-P., Stipdonk, L. W., Horton, S. E., Jackson, V. E., Reilly, S., Morgan, A. T., Fisher, S. E., Van Dulmen, S., & Eising, E. (2024). The association between stuttering burden and psychosocial aspects of life in adults. Journal of Speech, Language, and Hearing Research, 67(5), 1385-1399. doi:10.1044/2024_JSLHR-23-00562.
Abstract
Purpose:
Stuttering is a speech condition that can have a major impact on a person's quality of life. This descriptive study aimed to identify subgroups of people who stutter (PWS) based on stuttering burden and to investigate differences between these subgroups on psychosocial aspects of life.
Method:
The study included 618 adult participants who stutter. They completed a detailed survey examining stuttering symptomatology, impact of stuttering on anxiety, education and employment, experience of stuttering, and levels of depression, anxiety, and stress. A two-step cluster analytic procedure was performed to identify subgroups of PWS, based on self-report of stuttering frequency, severity, affect, and anxiety, four measures that together inform about stuttering burden.
Results:
We identified a high- (n = 230) and a low-burden subgroup (n = 372). The high-burden subgroup reported a significantly higher impact of stuttering on education and employment, and higher levels of general depression, anxiety, stress, and overall impact of stuttering. These participants also reported that they trialed more different stuttering therapies than those with lower burden.
Conclusions:
Our results emphasize the need to be attentive to the diverse experiences and needs of PWS, rather than treating them as a homogeneous group. Our findings also stress the importance of personalized therapeutic strategies for individuals with stuttering, considering all aspects that could influence their stuttering burden. People with high-burden stuttering might, for example, have a higher need for psychological therapy to reduce stuttering-related anxiety. People with less emotional reactions but severe speech distortions may also have a moderate to high burden, but they may have a higher need for speech techniques to communicate with more ease. Future research should give more insights into the therapeutic needs of people highly burdened by their stuttering.Additional information
supplemental material S1 supplemental material S2 supplemental material S3 primary data -
Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U. Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U., Grotegerd, D., Gruber, O., Hulshoff Pol, H. E., Schumann, G., Tamnes, C. K., Walter, H., Wierenga, L. M., Jahanshad, N., Thompson, P. M., Frangou, S., & ENIGMA Lifespan Working Group (2024). Normative modelling of brain morphometry across the lifespan with CentileBrain: Algorithm benchmarking and model optimisation. The Lancet Digital Health, 6(3), e211-e221. doi:10.1016/S2589-7500(23)00250-9.
Abstract
The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain. -
Galke, L., Ram, Y., & Raviv, L. (2024). Learning pressures and inductive biases in emergent communication: Parallels between humans and deep neural networks. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 197-201). Nijmegen: The Evolution of Language Conferences. -
Galke, L., Ram, Y., & Raviv, L. (2024). Deep neural networks and humans both benefit from compositional language structure. Nature Communications, 15: 10816. doi:10.1038/s41467-024-55158-1.
Abstract
Deep neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to systematically produce forms for new meanings. For humans, languages with more compositional and transparent structures are typically easier to learn than those with opaque and irregular structures. However, this learnability advantage has not yet been shown for deep neural networks, limiting their use as models for human language learning. Here, we directly test how neural networks compare to humans in learning and generalizing different languages that vary in their degree of compositional structure. We evaluate the memorization and generalization capabilities of a large language model and recurrent neural networks, and show that both deep neural networks exhibit a learnability advantage for more structured linguistic input: neural networks exposed to more compositional languages show more systematic generalization, greater agreement between different agents, and greater similarity to human learners.Additional information
https://www.nature.com/articles/s41467-024-55158-1#Sec23 -
García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A. García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A., Bis, J. C., Boks, M. P. M., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Burkhardt, R., Cahn, W., Calhoun, V. D., Carmichael, O. T., Chakravarty, M., Chen, Q., Ching, C. R. K., Cichon, S., Crespo-Facorro, B., Crivello, F., Dale, A. M., Smith, G. D., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Debette, S., DeCarli, C., Depondt, C., Desrivières, S., Djurovic, S., Ehrlich, S., Erk, S., Espeseth, T., Fernández, G., Filippi, I., Fisher, S. E., Fleischman, D. A., Fletcher, E., Fornage, M., Forstner, A. J., Francks, C., Franke, B., Ge, T., Goldman, A. L., Grabe, H. J., Green, R. C., Grimm, O., Groenewold, N. A., Gruber, O., Gudnason, V., Håberg, A. K., Haukvik, U. K., Heinz, A., Hibar, D. P., Hilal, S., Himali, J. J., Ho, B.-C., Hoehn, D. F., Hoekstra, P. J., Hofer, E., Hoffmann, W., Holmes, A. J., Homuth, G., Hosten, N., Ikram, M. K., Ipser, J. C., Jack Jr, C. R., Jahanshad, N., Jönsson, E. G., Kahn, R. S., Kanai, R., Klein, M., Knol, M. J., Launer, L. J., Lawrie, S. M., Le Hellard, S., Lee, P. H., Lemaître, H., Li, S., Liewald, D. C. M., Lin, H., Longstreth Jr, W. T., Lopez, O. L., Luciano, M., Maillard, P., Marquand, A. F., Martin, N. G., Martinot, J.-L., Mather, K. A., Mattay, V. S., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mirza-Schreiber, N., Milaneschi, Y., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Muñoz Maniega, S., Nauck, M., Nho, K., Niessen, W. J., Nöthen, M. M., Nyquist, P. A., Oosterlaan, J., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Psaty, B. M., Pütz, B., Reppermund, S., Rietschel, M. D., Risacher, S. L., Romanczuk-Seiferth, N., Romero-Garcia, R., Roshchupkin, G. V., Rotter, J. I., Sachdev, P. S., Sämann, P. G., Saremi, A., Sargurupremraj, M., Saykin, A. J., Schmaal, L., Schmidt, H., Schmidt, R., Schofield, P. R., Scholz, M., Schumann, G., Schwarz, E., Shen, L., Shin, J., Sisodiya, S. M., Smith, A. V., Smoller, J. W., Soininen, H. S., Steen, V. M., Stein, D. J., Stein, J. L., Thomopoulos, S. I., Toga, A., Tordesillas-Gutiérrez, D. T., Trollor, J. N., Valdes-Hernandez, M. C., Van 't Ent, D., Van Bokhoven, H., Van der Meer, D., Van der Wee, N. J. A., Vázquez-Bourgon, J., Veltman, D. J., Vernooij, M. W., Villringer, A., Vinke, L. N., Völzke, H., Walter, H., Wardlaw, J. M., Weinberger, D. R., Weiner, M. W., Wen, W., Westlye, L. T., Westman, E., White, T., Witte, A. V., Wolf, C., Yang, J., Zwiers, M. P., Ikram, M. A., Seshadri, S., Thompson, P. M., Satizabal, C. L., Medland, S. E., & Rentería, M. E. (2024). Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for brain variation across ancestries. Nature Genetics, 56, 2333-2344. doi:10.1038/s41588-024-01951-z.
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases. -
Goltermann*, O., Alagöz*, G., Molz, B., & Fisher, S. E. (2024). Neuroimaging genomics as a window into the evolution of human sulcal organization. Cerebral Cortex, 34(3): bhae078. doi:10.1093/cercor/bhae078.
Abstract
* Ole Goltermann and Gökberk Alagöz contributed equally.
Primate brain evolution has involved prominent expansions of the cerebral cortex, with largest effects observed in the human lineage. Such expansions were accompanied by fine-grained anatomical alterations, including increased cortical folding. However, the molecular bases of evolutionary alterations in human sulcal organization are not yet well understood. Here, we integrated data from recently completed large-scale neuroimaging genetic analyses with annotations of the human genome relevant to various periods and events in our evolutionary history. These analyses identified single-nucleotide polymorphism (SNP) heritability enrichments in fetal brain human-gained enhancer (HGE) elements for a number of sulcal structures, including the central sulcus, which is implicated in human hand dexterity. We zeroed in on a genomic region that harbors DNA variants associated with left central sulcus shape, an HGE element, and genetic loci involved in neurogenesis including ZIC4, to illustrate the value of this approach for probing the complex factors contributing to human sulcal evolution. -
Grönberg, D. J., Pinto de Carvalho, S. L., Dernerova, N., Norton, P., Wong, M. M. K., & Mendoza, E. (2024). Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Scientific Reports, 14: 29057. doi:10.1038/s41598-024-75353-w.
Abstract
Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.Additional information
supplementary material -
Grosseck, O., Perlman, M., Ortega, G., & Raviv, L. (2024). The iconic affordances of gesture and vocalization in emerging languages in the lab. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 223-225). Nijmegen: The Evolution of Language Conferences. -
Hegemann, L., Corfield, E. C., Askelund, A. D., Allegrini, A. G., Askeland, R. B., Ronald, A., Ask, H., St Pourcain, B., Andreassen, O. A., Hannigan, L. J., & Havdahl, A. (2024). Genetic and phenotypic heterogeneity in early neurodevelopmental traits in the Norwegian Mother, Father and Child Cohort Study. Molecular Autism, 15: 25. doi:10.1186/s13229-024-00599-0.
Abstract
Background
Autism and different neurodevelopmental conditions frequently co-occur, as do their symptoms at sub-diagnostic threshold levels. Overlapping traits and shared genetic liability are potential explanations.
Methods
In the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), we leverage item-level data to explore the phenotypic factor structure and genetic architecture underlying neurodevelopmental traits at age 3 years (N = 41,708–58,630) using maternal reports on 76 items assessing children’s motor and language development, social functioning, communication, attention, activity regulation, and flexibility of behaviors and interests.
Results
We identified 11 latent factors at the phenotypic level. These factors showed associations with diagnoses of autism and other neurodevelopmental conditions. Most shared genetic liabilities with autism, ADHD, and/or schizophrenia. Item-level GWAS revealed trait-specific genetic correlations with autism (items rg range = − 0.27–0.78), ADHD (items rg range = − 0.40–1), and schizophrenia (items rg range = − 0.24–0.34). We find little evidence of common genetic liability across all neurodevelopmental traits but more so for several genetic factors across more specific areas of neurodevelopment, particularly social and communication traits. Some of these factors, such as one capturing prosocial behavior, overlap with factors found in the phenotypic analyses. Other areas, such as motor development, seemed to have more heterogenous etiology, with specific traits showing a less consistent pattern of genetic correlations with each other.
Conclusions
These exploratory findings emphasize the etiological complexity of neurodevelopmental traits at this early age. In particular, diverse associations with neurodevelopmental conditions and genetic heterogeneity could inform follow-up work to identify shared and differentiating factors in the early manifestations of neurodevelopmental traits and their relation to autism and other neurodevelopmental conditions. This in turn could have implications for clinical screening tools and programs.Additional information
supplementary tables supplementary methods, results, and figures link to preprint -
Heim, F., Scharff, C., Fisher, S. E., Riebel, K., & Ten Cate, C. (2024). Auditory discrimination learning and acoustic cue weighing in female zebra finches with localized FoxP1 knockdowns. Journal of Neurophysiology, 131, 950-963. doi:10.1152/jn.00228.2023.
Abstract
Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.
NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition. -
Horton, S., Jackson, V., Boyce, J., Franken, M.-C., Siemers, S., St John, M., Hearps, S., Van Reyk, O., Braden, R., Parker, R., Vogel, A. P., Eising, E., Amor, D. J., Irvine, J., Fisher, S. E., Martin, N. G., Reilly, S., Bahlo, M., Scheffer, I., & Morgan, A. (2024). Self-reported stuttering severity is accurate: Informing methods for large-scale data collection in stuttering. Journal of Speech, Language, and Hearing Research, 67, 4015-4024. doi:10.1044/2023_JSLHR-23-00081.
Abstract
Purpose:
To our knowledge, there are no data examining the agreement between self-reported and clinician-rated stuttering severity. In the era of big data, self-reported ratings have great potential utility for large-scale data collection, where cost and time preclude in-depth assessment by a clinician. Equally, there is increasing emphasis on the need to recognize an individual's experience of their own condition. Here, we examined the agreement between self-reported stuttering severity compared to clinician ratings during a speech assessment. As a secondary objective, we determined whether self-reported stuttering severity correlated with an individual's subjective impact of stuttering.
Method:
Speech-language pathologists conducted face-to-face speech assessments with 195 participants (137 males) aged 5–84 years, recruited from a cohort of people with self-reported stuttering. Stuttering severity was rated on a 10-point scale by the participant and by two speech-language pathologists. Participants also completed the Overall Assessment of the Subjective Experience of Stuttering (OASES). Clinician and participant ratings were compared. The association between stuttering severity and the OASES scores was examined.
Results:
There was a strong positive correlation between speech-language pathologist and participant-reported ratings of stuttering severity. Participant-reported stuttering severity correlated weakly with the four OASES domains and with the OASES overall impact score.
Conclusions:
Participants were able to accurately rate their stuttering severity during a speech assessment using a simple one-item question. This finding indicates that self-report stuttering severity is a suitable method for large-scale data collection. Findings also support the collection of self-report subjective experience data using questionnaires, such as the OASES, which add vital information about the participants' experience of stuttering that is not captured by overt speech severity ratings alone. -
De Hoyos, L., Barendse, M. T., Schlag, F., Van Donkelaar, M. M. J., Verhoef, E., Shapland, C. Y., Klassmann, A., Buitelaar, J., Verhulst, B., Fisher, S. E., Rai, D., & St Pourcain, B. (2024). Structural models of genome-wide covariance identify multiple common dimensions in autism. Nature Communications, 15: 1770. doi:10.1038/s41467-024-46128-8.
Abstract
Common genetic variation has been associated with multiple symptoms in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we developed a structural equation modelling framework to directly model genome-wide covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent using a case-only design. We identified three independent genetic factors most strongly linked to language/cognition, behaviour and motor development, respectively, when studying a population-representative sample (N=5,331). These analyses revealed novel associations. For example, developmental delay in acquiring personal-social skills was inversely related to language, while developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-specific patterns, to phenotypic heterogeneity. -
Jansen, M. G., Zwiers, M. P., Marques, J. P., Chan, K.-S., Amelink, J., Altgassen, M., Oosterman, J. M., & Norris, D. G. (2024). The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study protocol and rationale. PLOS ONE, 19(6): e0306006. doi:10.1371/journal.pone.0306006.
Abstract
To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18–80 years, stratified by age decade and sex (median age 52, IQR 36–66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience. -
Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of variation in language evolution. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 286-289). Nijmegen: The Evolution of Language Conferences. -
Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of language evolution in heterogeneous populations. Cognitive Science: a multidisciplinary journal, 48(11): e70011. doi:10.1111/cogs.70011.
Abstract
Variations in language abilities, use, and production style are ubiquitous within any given population. While research on language evolution has traditionally overlooked the potential importance of such individual differences, these can have an important impact on the trajectory of language evolution and ongoing change. To address this gap, we use a group communication game for studying this mechanism in the lab, in which micro-societies of interacting participants develop and use artificial languages to successfully communicate with each other. Importantly, one participant in the group is assigned a keyboard with a limited inventory of letters (simulating a speech impairment that individuals may encounter in real life), forcing them to communicate differently than the rest. We test how languages evolve in such heterogeneous groups and whether they adapt to accommodate the unique characteristics of individuals with language idiosyncrasies. Our results suggest that language evolves differently in groups where some individuals have distinct language abilities, eliciting more innovative elements at the cost of reduced communicative success and convergence. Furthermore, we observed strong partner-specific accommodation to the minority individual, which carried over to the group level. Importantly, the degree of group-wide adaptation was not uniform and depended on participants’ attachment to established language forms. Our findings provide compelling evidence that individual differences can permeate and accumulate within a linguistic community, ultimately driving changes in languages over time. They also underscore the importance of integrating individual differences into future research on language evolution.Additional information
full analyses and plots -
Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K. Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K., Kämpe, A., Li, G. H. Y., Avinun, R., Atkins, J. R., Hsu, F.-C., Amod, A. R., Lam, M., Tsuchida, A., Teunissen, M. W. A., Aygün, N., Patel, Y., Liang, D., Beiser, A. S., Beyer, F., Bis, J. C., Bos, D., Bryan, R. N., Bülow, R., Caspers, S., Catheline, G., Cecil, C. A. M., Dalvie, S., Dartigues, J.-F., DeCarli, C., Enlund-Cerullo, M., Ford, J. M., Franke, B., Freedman, B. I., Friedrich, N., Green, M. J., Haworth, S., Helmer, C., Hoffmann, P., Homuth, G., Ikram, M. K., Jack, C. R., Jahanshad, N., Jockwitz, C., Kamatani, Y., Knodt, A. R., Li, S., Lim, K., Longstreth, W. T., Macciardi, F., The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, The Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium, Mäkitie, O., Mazoyer, B., Medland, S. E., Miyamoto, S., Moebus, S., Mosley, T. H., Muetzel, R., Mühleisen, T. W., Nagata, M., Nakahara, S., Palmer, N. D., Pausova, Z., Preda, A., Quidé, Y., Reay, W. R., Roshchupkin, G. V., Schmidt, R., Schreiner, P. J., Setoh, K., Shapland, C. Y., Sidney, S., St Pourcain, B., Stein, J. L., Tabara, Y., Teumer, A., Uhlmann, A., Van de Lught, A., Vernooij, M. W., Werring, D. J., Windham, B. G., Witte, A. V., Wittfeld, K., Yang, Q., Yoshida, K., Brunner, H. G., Le Grand, Q., Sim, K., Stein, D. J., Bowden, D. W., Cairns, M. J., Hariri, A. R., Cheung, C.-L., Andersson, S., Villringer, A., Paus, T., Chichon, S., Calhoun, V. D., Crivello, F., Launer, L. J., White, T., Koudstaal, P. J., Houlden, H., Fornage, M., Matsuda, F., Grabe, H. J., Ikram, M. A., Debette, S., Thompson, P. M., Seshadri, S., & Adams, H. H. H. (2024). Genetic variants for head size share genes and pathways with cancer. Cell Reports Medicine, 5(5): 101529. doi:10.1016/j.xcrm.2024.101529.
Abstract
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.Additional information
link to supplemental information -
Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S. Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S., Gruner, P., Sorensen, L., Pan, P. M., Silk, T. J., Gur, R. C., Cubillo, A. I., Haavik, J., O'Gorman Tuura, R. L., Hartman, C. A., Calvo, R., McGrath, J., Calderoni, S., Jackowski, A., Chantiluke, K. C., Satterthwaite, T. D., Busatto, G. F., Nigg, J. T., Gur, R. E., Retico, A., Tosetti, M., Gallagher, L., Szeszko, P. R., Neufeld, J., Ortiz, A. E., Ghisleni, C., Lazaro, L., Hoekstra, P. J., Anagnostou, E., Hoekstra, L., Simpson, B., Plessen, J. K., Deruelle, C., Soreni, N., James, A., Narayanaswamy, J., Reddy, J. Y. C., Fitzgerald, J., Bellgrove, M. A., Salum, G. A., Janssen, J., Muratori, F., Vila, M., Garcia Giral, M., Ameis, S. H., Bosco, P., Lundin Remnélius, K., Huyser, C., Pariente, J. C., Jalbrzikowski, M., Rosa, P. G. P., O'Hearn, K. M., Ehrlich, S., Mollon, J., Zugman, A., Christakou, A., Arango, C., Fisher, S. E., Kong, X., Franke, B., Medland, S. E., Thomopoulos, S. I., Jahanshad, N., Glahn, D. C., Thompson, P. M., Francks, C., & Luders, E. (2024). Large-scale analysis of structural brain asymmetries during neurodevelopment: Age effects and sex differences in 4,265 children and adolescents. Human Brain Mapping, 45(11): e26754. doi:10.1002/hbm.26754.
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females. -
Lammertink, I., De Heer Kloots, M., Bazioni, M., & Raviv, L. (2024). Learnability effects in children: Are more structured languages easier to learn? In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 320-323). Nijmegen: The Evolution of Language Conferences. -
Lupyan, G., & Raviv, L. (2024). A cautionary note on sociodemographic predictors of linguistic complexity: Different measures and different analyses lead to different conclusions. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 345-348). Nijmegen: The Evolution of Language Conferences. -
Melnychuk, T., Galke, L., Seidlmayer, E., Bröring, S., Förstner, K. U., Tochtermann, K., & Schultz, C. (2024). Development of similarity measures from graph-structured bibliographic metadata: An application to identify scientific convergence. IEEE Transactions on Engineering Management, 71, 9171 -9187. doi:10.1109/TEM.2023.3308008.
Abstract
Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early. -
Motiekaitytė, K., Grosseck, O., Wolf, L., Bosker, H. R., Peeters, D., Perlman, M., Ortega, G., & Raviv, L. (2024). Iconicity and compositionality in emerging vocal communication systems: a Virtual Reality approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 387-389). Nijmegen: The Evolution of Language Conferences. -
Oblong, L. M., Soheili-Nezhad, S., Trevisan, N., Shi, Y., Beckmann, C. F., & Sprooten, E. (2024). Principal and independent genomic components of brain structure and function. Genes, Brain and Behavior, 23(1): e12876. doi:10.1111/gbb.12876.
Abstract
The highly polygenic and pleiotropic nature of behavioural traits, psychiatric disorders and structural and functional brain phenotypes complicate mechanistic interpretation of related genome-wide association study (GWAS) signals, thereby obscuring underlying causal biological processes. We propose genomic principal and independent component analysis (PCA, ICA) to decompose a large set of univariate GWAS statistics of multimodal brain traits into more interpretable latent genomic components. Here we introduce and evaluate this novel methods various analytic parameters and reproducibility across independent samples. Two UK Biobank GWAS summary statistic releases of 2240 imaging-derived phenotypes (IDPs) were retrieved. Genome-wide beta-values and their corresponding standard-error scaled z-values were decomposed using genomic PCA/ICA. We evaluated variance explained at multiple dimensions up to 200. We tested the inter-sample reproducibility of output of dimensions 5, 10, 25 and 50. Reproducibility statistics of the respective univariate GWAS served as benchmarks. Reproducibility of 10-dimensional PCs and ICs showed the best trade-off between model complexity and robustness and variance explained (PCs: |rz − max| = 0.33, |rraw − max| = 0.30; ICs: |rz − max| = 0.23, |rraw − max| = 0.19). Genomic PC and IC reproducibility improved substantially relative to mean univariate GWAS reproducibility up to dimension 10. Genomic components clustered along neuroimaging modalities. Our results indicate that genomic PCA and ICA decompose genetic effects on IDPs from GWAS statistics with high reproducibility by taking advantage of the inherent pleiotropic patterns. These findings encourage further applications of genomic PCA and ICA as fully data-driven methods to effectively reduce the dimensionality, enhance the signal to noise ratio and improve interpretability of high-dimensional multitrait genome-wide analyses. -
Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S. Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S., Choo, S., Naruse, M., Ehara, U., Sy, L., Lenini Parselelo, M., Anglada-Tort, M., Hansen, N. C., Haiduk, F., Færøvik, U., Magalhães, V., Krzyżanowski, W., Shcherbakova, O., Hereld, D., Barbosa, B. S., Correa Varella, M. A., Van Tongeren, M., Dessiatnitchenko, P., Zar Zar, S., El Kahla, I., Muslu, O., Troy, J., Lomsadze, T., Kurdova, D., Tsope, C., Fredriksson, D., Arabadjiev, A., Sarbah, J. P., Arhine, A., Ó Meachair, T., Silva-Zurita, J., Soto-Silva, I., Muñoz Millalonco, N. E., Ambrazevičius, R., Loui, P., Ravignani, A., Jadoul, Y., Larrouy-Maestri, P., Bruder, C., Teyxokawa, T. P., Kuikuro, U., Natsitsabui, R., Sagarzazu, N. B., Raviv, L., Zeng, M., Varnosfaderani, S. D., Gómez-Cañón, J. S., Kolff, K., Vanden Bosch der Nederlanden, C., Chhatwal, M., David, R. M., Putu Gede Setiawan, I., Lekakul, G., Borsan, V. N., Nguqu, N., & Savage, P. E. (2024). Globally, songs and instrumental melodies are slower, higher, and use more stable pitches than speech: A Registered Report. Science Advances, 10(20): eadm9797. doi:10.1126/sciadv.adm9797.
Abstract
Both music and language are found in all known human societies, yet no studies have compared similarities and differences between song, speech, and instrumental music on a global scale. In this Registered Report, we analyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, recited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and (ii) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages. Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch, (ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval size and (v) timbral brightness. Exploratory analyses suggest that features vary along a “musi-linguistic” continuum when including instrumental melodies and recited lyrics. Our study provides strong empirical evidence of cross-cultural regularities in music and speech.Additional information
supplementary materials -
Perugini, A., Fontanillas, P., Gordon, S. D., Fisher, S. E., Martin, N. G., Bates, T. C., & Luciano, M. (2024). Dyslexia polygenic scores show heightened prediction of verbal working memory and arithmetic. Scientific Studies of Reading, 28(5), 549-563. doi:10.1080/10888438.2024.2365697.
Abstract
Purpose
The aim of this study is to establish which specific cognitive abilities are phenotypically related to reading skill in adolescence and determine whether this phenotypic correlation is explained by polygenetic overlap.
Method
In an Australian population sample of twins and non-twin siblings of European ancestry (734 ≤ N ≤ 1542 [50.7% < F < 66%], mean age = 16.7, range = 11–28 years) from the Brisbane Adolescent Twin Study, mixed-effects models were used to test the association between a dyslexia polygenic score (based on genome-wide association results from a study of 51,800 dyslexics versus >1 million controls) and quantitative cognitive measures. The variance in the cognitive measure explained by the polygenic score was compared to that explained by a reading difficulties phenotype (scores that were lower than 1.5 SD below the mean reading skill) to derive the proportion of the association due to genetic influences.
Results
The strongest phenotypic correlations were between poor reading and verbal tests (R2 up to 6.2%); visuo-spatial working memory was the only measure that did not show association with poor reading. Dyslexia polygenic scores could completely explain the phenotypic covariance between poor reading and most working memory tasks and were most predictive of performance on a test of arithmetic (R2=2.9%).
Conclusion
Shared genetic pathways are thus highlighted for the commonly found association between reading and mathematics abilities, and for the verbal short-term/working memory deficits often observed in dyslexia.Additional information
supplementary materials -
de Reus, K., Benítez-Burraco, A., Hersh, T. A., Groot, N., Lambert, M. L., Slocombe, K. E., Vernes, S. C., & Raviv, L. (2024). Self-domestication traits in vocal learning mammals. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (
Eds. ), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 105-108). Nijmegen: The Evolution of Language Conferences. -
Schijven, D., Soheili-Nezhad, S., Fisher, S. E., & Francks, C. (2024). Exome-wide analysis implicates rare protein-altering variants in human handedness. Nature Communications, 15: 2632. doi:10.1038/s41467-024-46277-w.
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.Additional information
supplementary information reporting summary peer review file link to preprint -
Seidlmayer, E., Melnychuk, T., Galke, L., Kühnel, L., Tochtermann, K., Schultz, C., & Förstner, K. U. (2024). Research topic displacement and the lack of interdisciplinarity: Lessons from the scientific response to COVID-19. Scientometrics, 129, 5141-5179. doi:10.1007/s11192-024-05132-x.
Abstract
Based on a large-scale computational analysis of scholarly articles, this study investigates the dynamics of interdisciplinary research in the first year of the COVID-19 pandemic. Thereby, the study also analyses the reorientation effects away from other topics that receive less attention due to the high focus on the COVID-19 pandemic. The study aims to examine what can be learned from the (failing) interdisciplinarity of coronavirus research and its displacing effects for managing potential similar crises at the scientific level. To explore our research questions, we run several analyses by using the COVID-19++ dataset, which contains scholarly publications, preprints from the field of life sciences, and their referenced literature including publications from a broad scientific spectrum. Our results show the high impact and topic-wise adoption of research related to the COVID-19 crisis. Based on the similarity analysis of scientific topics, which is grounded on the concept embedding learning in the graph-structured bibliographic data, we measured the degree of interdisciplinarity of COVID-19 research in 2020. Our findings reveal a low degree of research interdisciplinarity. The publications’ reference analysis indicates the major role of clinical medicine, but also the growing importance of psychiatry and social sciences in COVID-19 research. A social network analysis shows that the authors’ high degree of centrality significantly increases her or his degree of interdisciplinarity. -
Serio, B., Hettwer, M. D., Wiersch, L., Bignardi, G., Sacher, J., Weis, S., Eickhoff, S. B., & Valk, S. L. (2024). Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nature Communications, 15: 7714. doi:10.1038/s41467-024-51942-1.
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.Additional information
41467_2024_51942_MOESM1_ESM.pdf -
Soheili-Nezhad, S., Ibáñez-Solé, O., Izeta, A., Hoeijmakers, J. H. J., & Stoeger, T. (2024). Time is ticking faster for long genes in aging. Trends in Genetics, 40(4), 299-312. doi:10.1016/j.tig.2024.01.009.
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer’s disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging. -
Soheili-Nezhad, S., Schijven, D., Mars, R. B., Fisher, S. E., & Francks, C. (2024). Distinct impact modes of polygenic disposition to dyslexia in the adult brain. Science Advances, 10(51): eadq2754. doi:10.1126/sciadv.adq2754.
Abstract
Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain size, and especially reduced volume and/or altered fiber density in networks involved in motor control, language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct patterns of association with brain structural features. Independent component analysis applied to brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition in terms of brain-wide associations, with microstructure of the internal capsule consistently implicated. In contrast, lower volume of the primary motor cortex was only associated with higher dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with respect to other genetically correlated traits.Additional information
link to preprint -
Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O. Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O., Saffery, R., Bønnelykke, K., Reilly, S., Pennell, C. E., Wake, M., Cecil, C. A., Plomin, R., Fisher, S. E., & St Pourcain, B. (2024). Genome-wide analyses of vocabulary size in infancy and toddlerhood: Associations with Attention-Deficit/Hyperactivity Disorder and cognition-related traits. Biological Psychiatry, 95(1), 859-869. doi:10.1016/j.biopsych.2023.11.025.
Abstract
Background
The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD).
Methods
We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models.
Results
Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity.
Conclusions
The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits. -
Wesseldijk, L. W., Henechowicz, T. L., Baker, D. J., Bignardi, G., Karlsson, R., Gordon, R. L., Mosing, M. A., Ullén, F., & Fisher, S. E. (2024). Notes from Beethoven’s genome. Current Biology, 34(6), R233-R234. doi:10.1016/j.cub.2024.01.025.
Abstract
Rapid advances over the last decade in DNA sequencing and statistical genetics enable us to investigate the genomic makeup of individuals throughout history. In a recent notable study, Begg et al.1 used Ludwig van Beethoven’s hair strands for genome sequencing and explored genetic predispositions for some of his documented medical issues. Given that it was arguably Beethoven’s skills as a musician and composer that made him an iconic figure in Western culture, we here extend the approach and apply it to musicality. We use this as an example to illustrate the broader challenges of individual-level genetic predictions.Additional information
supplemental information -
Wong, M. M. K., Sha, Z., Lütje, L., Kong, X., Van Heukelum, S., Van de Berg, W. D. J., Jonkman, L. E., Fisher, S. E., & Francks, C. (2024). The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. Proceedings of the National Academy of Sciences of the United States of America, 121(34): e2401687121. doi:10.1073/pnas.2401687121.
Abstract
The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here we generated a new gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with inter-individual variation in structural connectivity between left-hemisphere frontal and temporal language cortex, and with predisposition to dyslexia. The axon guidance genes SLIT1 and SLIT2 were consistently implicated. These findings identify region-specific patterns of laminar gene expression as a feature of the brain’s language network. -
Zhou, H., Van der Ham, S., De Boer, B., Bogaerts, L., & Raviv, L. (2024). Modality and stimulus effects on distributional statistical learning: Sound vs. sight, time vs. space. Journal of Memory and Language, 138: 104531. doi:10.1016/j.jml.2024.104531.
Abstract
Statistical learning (SL) is postulated to play an important role in the process of language acquisition as well as in other cognitive functions. It was found to enable learning of various types of statistical patterns across different sensory modalities. However, few studies have distinguished distributional SL (DSL) from sequential and spatial SL, or examined DSL across modalities using comparable tasks. Considering the relevance of such findings to the nature of SL, the current study investigated the modality- and stimulus-specificity of DSL. Using a within-subject design we compared DSL performance in auditory and visual modalities. For each sensory modality, two stimulus types were used: linguistic versus non-linguistic auditory stimuli and temporal versus spatial visual stimuli. In each condition, participants were exposed to stimuli that varied in their length as they were drawn from two categories (short versus long). DSL was assessed using a categorization task and a production task. Results showed that learners’ performance was only correlated for tasks in the same sensory modality. Moreover, participants were better at categorizing the temporal signals in the auditory conditions than in the visual condition, where in turn an advantage of the spatial condition was observed. In the production task participants exaggerated signal length more for linguistic signals than non-linguistic signals. Together, these findings suggest that DSL is modality- and stimulus-sensitive.Additional information
link to preprint -
Brucato, N., Cassar, O., Tonasso, L., Tortevoye, P., Migot-Nabias, F., Plancoulaine, S., Guitard, E., Larrouy, G., Gessain, A., & Dugoujon, J.-M. (2010). The imprint of the Slave Trade in an African American population: Mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana. BMC Evolutionary Biology, 10, 314. doi:10.1186/1471-2148-10-314.
Abstract
Background Retracing the genetic histories of the descendant populations of the Slave Trade (16th-19th centuries) is particularly challenging due to the diversity of African ethnic groups involved and the different hybridisation processes with Europeans and Amerindians, which have blurred their original genetic inheritances. The Noir Marron in French Guiana are the direct descendants of maroons who escaped from Dutch plantations in the current day Surinam. They represent an original ethnic group with a highly blended culture. Uniparental markers (mtDNA and NRY) coupled with HTLV-1 sequences (env and LTR) were studied to establish the genetic relationships linking them to African American and African populations. Results All genetic systems presented a high conservation of the African gene pool (African ancestry: mtDNA = 99.3%; NRY = 97.6%; HTLV-1 env = 20/23; HTLV-1 LTR = 6/8). Neither founder effect nor genetic drift was detected and the genetic diversity is within a range commonly observed in Africa. Higher genetic similarities were observed with the populations inhabiting the Bight of Benin (from Ivory Coast to Benin). Other ancestries were identified but they presented an interesting sex-bias. Whilst male origins spread throughout the north of the bight (from Benin to Senegal), female origins were spread throughout the south (from the Ivory Coast to Angola). Conclusions The Noir Marron are unique in having conserved their African genetic ancestry, despite major cultural exchanges with Amerindians and Europeans through inhabiting the same region for four centuries. Their maroon identity and the important number of slaves deported in this region have maintained the original African diversity. All these characteristics permit to identify a major origin located in the former region of the Gold Coast and the Bight of Benin; regions highly impacted by slavery, from which goes a sex-biased longitudinal gradient of ancestry.Additional information
Additional 1. References of the populations compiled in the databases used for … Additional 2. MtDNA haplotypes and their respective haplogroup classification f… Additional 3. AMOVA analyses performed with mtDNA and NRY data to compare the N… Additional 4. NRY haplotypes and their respective haplogroup classification fou… Additional 5. LTR phylogenetic tree constructed by the neighbour-joining method… -
Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (
Eds. ), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.Abstract
There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history. -
Dugoujon, J.-M., Larrouy, G., Mazières, S., Brucato, N., Sevin, A., Cassar, O., & Gessain, A. (2010). Histoire et dynamique du peuplement humain en Amazonie: L’exemple de la Guyane. In A. Pavé, & G. Fornet (
Eds. ), Amazonie: Une aventure scientifique et humaine du CNRS (pp. 128-132). Paris: Galaade Éditions. -
Fisher, S. E. (2010). Genetic susceptibility to stuttering [Editorial]. New England Journal of Medicine, 362, 750-752. doi:10.1056/NEJMe0912594.
Files private
Request files -
Francks, C., Tozzi, F., Farmer, A., Vincent, J. B., Rujescu, D., St Clair, D., & Muglia, P. (2010). Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13. Molecular Psychiatry, 15, 319-325. doi:10.1038/mp.2008.100.
Abstract
Population-based linkage analysis is a new method for analysing genomewide single nucleotide polymorphism (SNP) genotype data in case-control samples, which does not assume a common disease, common variant model. The genome is scanned for extended segments that show increased identity-by-descent sharing within case-case pairs, relative to case-control or control-control pairs. The method is robust to allelic heterogeneity and is suited to mapping genes which contain multiple, rare susceptibility variants of relatively high penetrance. We analysed genomewide SNP datasets for two schizophrenia case-control cohorts, collected in Aberdeen (461 cases, 459 controls) and Munich (429 cases, 428 controls). Population-based linkage testing must be performed within homogeneous samples and it was therefore necessary to analyse the cohorts separately. Each cohort was first subjected to several procedures to improve genetic homogeneity, including identity-by-state outlier detection and multidimensional scaling analysis. When testing only cases who reported a positive family history of major psychiatric disease, consistent with a model of strongly penetrant susceptibility alleles, we saw a distinct peak on chromosome 19q in both cohorts that appeared in meta-analysis (P=0.000016) to surpass the traditional level for genomewide significance for complex trait linkage. The linkage signal was also present in a third case-control sample for familial bipolar disorder, such that meta-analysing all three datasets together yielded a linkage P=0.0000026. A model of rare but highly penetrant disease alleles may be more applicable to some instances of major psychiatric diseases than the common disease common variant model, and we therefore suggest that other genome scan datasets are analysed with this new, complementary method.Additional information
http://www.nature.com/mp/journal/v15/n3/suppinfo/mp2008100s1.html?url=/mp/journ… -
Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390-401. doi:10.1111/j.1601-183X.2010.00570.x.
Abstract
Heterozygous mutations of the human FOXP2 gene are implicated in a severe speech and language disorder. Aetiological mutations of murine Foxp2 yield abnormal synaptic plasticity and impaired motor-skill learning in mutant mice, while knockdown of the avian orthologue in songbirds interferes with auditory-guided vocal learning. Here, we investigate influences of two distinct Foxp2 point mutations on vocalizations of 4-day-old mouse pups (Mus musculus). The R552H missense mutation is identical to that causing speech and language deficits in a large well-studied human family, while the S321X nonsense mutation represents a null allele that does not produce Foxp2 protein. We ask whether vocalizations, based solely on innate mechanisms of production, are affected by these alternative Foxp2 mutations. Sound recordings were taken in two different situations: isolation and distress, eliciting a range of call types, including broadband vocalizations of varying noise content, ultrasonic whistles and clicks. Sound production rates and several acoustic parameters showed that, despite absence of functional Foxp2, homozygous mutants could vocalize all types of sounds in a normal temporal pattern, but only at comparably low intensities. We suggest that altered vocal output of these homozygotes may be secondary to developmental delays and somatic weakness. Heterozygous mutants did not differ from wild-types in any of the measures that we studied (R552H ) or in only a few (S321X ), which were in the range of differences routinely observed for different mouse strains. Thus, Foxp2 is not essential for the innate production of emotional vocalizations with largely normal acoustic properties by mouse pups. -
Ingason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J. and 20 moreIngason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Walshe, M., Vassos, E., Di Forti, M., Murray, R., Bonetto, C., Tosato, S., Cantor, R. M., Rietschel, M., Craddock, N., Owen, M. J., Andreassen, O. A., Nothen, M. M., Peltonen, L., St. Clair, D., Ophoff, R. A., O’Donovan, M. C., Collier, D. A., Werge, T., & Rujescu, D. (2010). A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 19(7), 1379-1386. doi:10.1093/hmg/ddq009.
Abstract
The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.Additional information
http://hmg.oxfordjournals.org/content/19/7/1379/suppl/DC1 -
Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R. and 86 moreLiu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R., Kesaniemi, A., McPherson, R., Vincent, J. B., Strauss, J., Kennedy, J. L., Farmer, A., McGuffin, P., Day, R., Matthews, K., Bakke, P., Gulsvik, A., Lucae, S., Ising, M., Brueckl, T., Horstmann, S., Wichmann–, H.-E., Rawal, R., Dahmen, N., Lamina, C., Polasek, O., Zgaga, L., Huffman, J., Campbell, S., Kooner, J., Chambers, J. C., Burnett, M. S., Devaney, J. M., Pichard, A. D., Kent, K. M., Satler, L., Lindsay, J. M., Waksman, R., Epstein, S., Wilson, J. F., Wild, S. H., Campbell, H., Vitart, V., Reilly, M. P., Li, M., Qu, L., Wilensky, R., Matthai, W., Hakonarson, H. H., Rader, D. J., Franke, A., Wittig, M., Schäfer, A., Uda, M., Terracciano, A., Xiao, X., Busonero, F., Scheet, P., Schlessinger, D., St. Clair, D., Rujescu, D., Abecasis, G. R., Grabe, H. J., Teumer, A., Völzke, H., Petersmann, A., John, U., Rudan, I., Hayward, C., Wright, A. F., Kolcic, I., Wright, B. J., Thompson, J. R., Balmforth, A. J., Hall, A. S., Samani, N. J., Anderson, C. A., Ahmad, T., Mathew, C. G., Parkes, M., Satsangi, J., Caulfield, M., Munroe, P. B., Farrall, M., Dominiczak, A., Worthington, J., Thomson, W., Eyre, S., Barton, A., Mooser, V., Francks, C., & Marchini, J. (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 42(5), 436-440. doi:10.1038/ng.572.
Abstract
Smoking is a leading global cause of disease and mortality. We established the Oxford-GlaxoSmithKline study (Ox-GSK) to perform a genome-wide meta-analysis of SNP association with smoking-related behavioral traits. Our final data set included 41,150 individuals drawn from 20 disease, population and control cohorts. Our analysis confirmed an effect on smoking quantity at a locus on 15q25 (P = 9.45 x 10(-19)) that includes CHRNA5, CHRNA3 and CHRNB4, three genes encoding neuronal nicotinic acetylcholine receptor subunits. We used data from the 1000 Genomes project to investigate the region using imputation, which allowed for analysis of virtually all common SNPs in the region and offered a fivefold increase in marker density over HapMap2 (ref. 2) as an imputation reference panel. Our fine-mapping approach identified a SNP showing the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3. -
Maguire, W., McMahon, A., Heggarty, P., & Dediu, D. (2010). The past, present, and future of English dialects: Quantifying convergence, divergence, and dynamic equilibrium. Language Variation and Change, 22, 69-104. doi:10.1017/S0954394510000013.
Abstract
This article reports on research which seeks to compare and measure the similarities between phonetic transcriptions in the analysis of relationships between varieties of English. It addresses the question of whether these varieties have been converging, diverging, or maintaining equilibrium as a result of endogenous and exogenous phonetic and phonological changes. We argue that it is only possible to identify such patterns of change by the simultaneous comparison of a wide range of varieties of a language across a data set that has not been specifically selected to highlight those changes that are believed to be important. Our analysis suggests that although there has been an obvious reduction in regional variation with the loss of traditional dialects of English and Scots, there has not been any significant convergence (or divergence) of regional accents of English in recent decades, despite the rapid spread of a number of features such as TH-fronting. -
Muglia, P., Tozzi, F., Galwey, N. W., Francks, C., Upmanyu, R., Kong, X., Antoniades, A., Domenici, E., Perry, J., Rothen, S., Vandeleur, C. L., Mooser, V., Waeber, G., Vollenweider, P., Preisig, M., Lucae, S., Muller-Myhsok, B., Holsboer, F., Middleton, L. T., & Roses, A. D. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15(6), 589-601. doi:10.1038/mp.2008.131.
Abstract
Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.Additional information
http://www.nature.com/mp/journal/v15/n6/suppinfo/mp2008131s1.html?url=/mp/journ… -
Newbury, D. F., Fisher, S. E., & Monaco, A. P. (2010). Recent advances in the genetics of language impairment. Genome Medicine, 2, 6. doi:10.1186/gm127.
Abstract
Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition. -
Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S. E., & Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19, 4848-4860. doi:10.1093/hmg/ddq415.
Abstract
It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), while mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2 binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites, and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired FOXP2 regulation of SRPX2 promoter activity, while that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNPA2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.Additional information
Roll_et_al_2010_Suppl_Material.doc -
Zhernakova, A., Elbers, C. C., Ferwerda, B., Romanos, J., Trynka, G., Dubois, P. C., De Kovel, C. G. F., Franke, L., Oosting, M., Barisani, D., Bardella, M. T., Joosten, L. A. B., Saavalainen, P., van Heel, D. A., Catassi, C., Netea, M. G., Wijmenga, C., & Finnish Celiac Dis Study, G. (2010). Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. American Journal of Human Genetics, 86(6), 970-977. doi:10.1016/j.ajhg.2010.05.004.
Abstract
Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (F(st)) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.Additional information
http://www.sciencedirect.com/science/article/pii/S000292971000251X#appd002
Share this page