Displaying 1 - 80 of 80
  • Amelink, J., Postema, M., Kong, X., Schijven, D., Carrion Castillo, A., Soheili-Nezhad, S., Sha, Z., Molz, B., Joliot, M., Fisher, S. E., & Francks, C. (2024). Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Communications Biology, 7: 1209. doi:10.1038/s42003-024-06890-3.

    Abstract

    Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying the genetic architecture of its functional connectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis based on rare, protein-altering variants (frequencies < 1%) suggested 7 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its asymmetry based on both common and rare genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference.
  • Bignardi, G., Smit, D. J. A., Vessel, E. A., Trupp, M. D., Ticini, L. F., Fisher, S. E., & Polderman, T. J. C. (2024). Genetic effects on variability in visual aesthetic evaluations are partially shared across visual domains. Communications Biology, 7: 55. doi:10.1038/s42003-023-05710-4.

    Abstract

    The aesthetic values that individuals place on visual images are formed and shaped over a lifetime. However, whether the formation of visual aesthetic value is solely influenced by environmental exposure is still a matter of debate. Here, we considered differences in aesthetic value emerging across three visual domains: abstract images, scenes, and faces. We examined variability in two major dimensions of ordinary aesthetic experiences: taste-typicality and evaluation-bias. We build on two samples from the Australian Twin Registry where 1547 and 1231 monozygotic and dizygotic twins originally rated visual images belonging to the three domains. Genetic influences explained 26% to 41% of the variance in taste-typicality and evaluation-bias. Multivariate analyses showed that genetic effects were partially shared across visual domains. Results indicate that the heritability of major dimensions of aesthetic evaluations is comparable to that of other complex social traits, albeit lower than for other complex cognitive traits. The exception was taste-typicality for abstract images, for which we found only shared and unique environmental influences. Our study reveals that diverse sources of genetic and environmental variation influence the formation of aesthetic value across distinct visual domains and provides improved metrics to assess inter-individual differences in aesthetic value.

    Additional information

    supplementary information
  • Black , M. H., Buitelaar , J., Charman , T., Ecker , C., Gallagher , L., Hens , K., Jones , E., Murphy , D., Sadaka, Y., Schaer , M., St Pourcain, B., Wolke , D., Bonnot-Briey , S., Bougeron , T., & Bölte , S. (2024). A conceptual framework for data harmonization in mental health using the International Classification of Functioning Disability and Health (ICF): An example with the R2D2-MH Consortium. BMJ Mental Health, 27(1): e301283. doi:10.1136/bmjment-2024-301283.

    Abstract

    Introduction Advancing research and support for neurologically diverse populations requires novel data harmonisation methods that are capable of aligning with contemporary approaches to understanding health and disability.

    Objectives We present the International Classification of Functioning, Disability and Health (ICF) as a conceptual framework to support harmonisation of mental health data and present a proof of principle within the Risk and Resilience in Developmental Diversity and Mental Health (R2D2-MH) consortium.

    Method 138 measures from various mental health datasets were linked to the ICF following the WHO’s established linking rules.

    Findings Findings support the notion that the ICF can assist in the harmonisation of mental health data. The high level of shared ICF codes provides indications of where items may be readily harmonised to develop datasets that may align more readily with contemporary approaches to understanding health and disability. Although the linking process necessarily entails an element of subjectivity, the application of established rules can increase rigour and transparency of the harmonisation process.

    Conclusions We present the first steps towards data harmonisation in mental health that is compatible with contemporary approaches in psychiatry, being more capable of capturing diversity and aligning with more transdiagnostic and neurodiversity-affirmative ways of understanding data.

    Clinical implications Our findings show promise, but future work is needed to address quantitative harmonisation. Similarly, issues related to the traditionally ‘pathophysiological’ frameworks that existing datasets are often embedded in can hinder the full potential of harmonisation based on the ICF.

    Additional information

    data supplement
  • Boen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S. and 96 moreBoen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S., Corvin, A. P., Crespo Facorro, B., Dannlowski, U., David, F. S., De Geus, E. J., De Zubicaray, G. I., Desrivières, S., Doherty, J. L., Donohoe, G., Ehrlich, S., Eising, E., Espeseth, T., Fisher, S. E., Forstner, A. J., Fortaner Uyà, L., Frouin, V., Fukunaga, M., Ge, T., Glahn, D. C., Goltermann, J., Grabe, H. J., Green, M. J., Groenewold, N. A., Grotegerd, D., Hahn, T., Hashimoto, R., Hehir-Kwa, J. Y., Henskens, F. A., Holmes, A. J., Haberg, A. K., Haavik, J., Jacquemont, S., Jansen, A., Jockwitz, C., Jonsson, E. G., Kikuchi, M., Kircher, T., Kumar, K., Le Hellard, S., Leu, C., Linden, D. E., Liu, J., Loughnan, R., Mather, K. A., McMahon, K. L., McRae, A. F., Medland, S. E., Meinert, S., Moreau, C. A., Morris, D. W., Mowry, B. J., Muhleisen, T. W., Nenadić, I., Nöthen, M. M., Nyberg, L., Owen, M. J., Paolini, M., Paus, T., Pausova, Z., Persson, K., Quidé, Y., Reis Marques, T., Sachdev, P. S., Sando, S. B., Schall, U., Scott, R. J., Selbæk, G., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Stein, F., Stein, D. J., Straube, B., Streit, F., Strike, L. T., Teumer, A., Teutenberg, L., Thalamuthu, A., Tooney, P. A., Tordesillas-Gutierrez, D., Trollor, J. N., Van 't Ent, D., Van den Bree, M. B. M., Van Haren, N. E. M., Vazquez-Bourgon, J., Volzke, H., Wen, W., Wittfeld, K., Ching, C. R., Westlye, L. T., Thompson, P. M., Bearden, C. E., Selmer, K. K., Alnæs, D., Andreassen, O. A., & Sonderby, I. E. (2024). Beyond the global brain differences: Intra-individual variability differences in 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers. Biological Psychiatry, 95(2), 147-160. doi:10.1016/j.biopsych.2023.08.018.

    Abstract

    Background

    The 1q21.1 distal and 15q11.2 BP1-BP2 CNVs exhibit regional and global brain differences compared to non-carriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intra-individual variability measures can be used to test for regional differences beyond global differences in brain structure.

    Methods

    Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n=30) and duplication (n=27), and 15q11.2 BP1-BP2 deletion (n=170) and duplication (n=243) carriers and matched non-carriers (n=2,350). Regional intra-deviation (RID) scores i.e., the standardized difference between an individual’s regional difference and global difference, were used to test for regional differences that diverge from the global difference.

    Results

    For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate and temporal pole differed less, and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex and temporal pole differed less, and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness.

    Conclusion

    We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 CNVs. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs, with the potential to increase our understanding of mechanisms involved in altered neurodevelopment.

    Additional information

    supplementary material
  • Cheung, C.-Y., Kirby, S., & Raviv, L. (2024). The role of gender, social bias and personality traits in shaping linguistic accommodation: An experimental approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 80-82). Nijmegen: The Evolution of Language Conferences. doi:10.17617/2.3587960.
  • Cornelis, S. S., IntHout, J., Runhart, E. H., Grunewald, O., Lin, S., Corradi, Z., Khan, M., Hitti-Malin, R. J., Whelan, L., Farrar, G. J., Sharon, D., Van den Born, L. I., Arno, G., Simcoe, M., Michaelides, M., Webster, A. R., Roosing, S., Mahroo, O. A., Dhaenens, C.-M., Cremers, F. P. M. Cornelis, S. S., IntHout, J., Runhart, E. H., Grunewald, O., Lin, S., Corradi, Z., Khan, M., Hitti-Malin, R. J., Whelan, L., Farrar, G. J., Sharon, D., Van den Born, L. I., Arno, G., Simcoe, M., Michaelides, M., Webster, A. R., Roosing, S., Mahroo, O. A., Dhaenens, C.-M., Cremers, F. P. M., & ABCA4 Study Group (2024). Representation of women among individuals with mild variants in ABCA4-associated retinopathy: A meta-analysis. JAMA Ophthalmology, 142(5), 463-471. doi:10.1001/jamaophthalmol.2024.0660.

    Abstract

    Importance
    Previous studies indicated that female sex might be a modifier in Stargardt disease, which is an ABCA4-associated retinopathy.

    Objective
    To investigate whether women are overrepresented among individuals with ABCA4-associated retinopathy who are carrying at least 1 mild allele or carrying nonmild alleles.

    Data Sources
    Literature data, data from 2 European centers, and a new study. Data from a Radboudumc database and from the Rotterdam Eye Hospital were used for exploratory hypothesis testing.

    Study Selection
    Studies investigating the sex ratio in individuals with ABCA4-AR and data from centers that collected ABCA4 variant and sex data. The literature search was performed on February 1, 2023; data from the centers were from before 2023.

    Data Extraction and Synthesis
    Random-effects meta-analyses were conducted to test whether the proportions of women among individuals with ABCA4-associated retinopathy with mild and nonmild variants differed from 0.5, including subgroup analyses for mild alleles. Sensitivity analyses were performed excluding data with possibly incomplete variant identification. χ2 Tests were conducted to compare the proportions of women in adult-onset autosomal non–ABCA4-associated retinopathy and adult-onset ABCA4-associated retinopathy and to investigate if women with suspected ABCA4-associated retinopathy are more likely to obtain a genetic diagnosis. Data analyses were performed from March to October 2023.

    Main Outcomes and Measures
    Proportion of women per ABCA4-associated retinopathy group. The exploratory testing included sex ratio comparisons for individuals with ABCA4-associated retinopathy vs those with other autosomal retinopathies and for individuals with ABCA4-associated retinopathy who underwent genetic testing vs those who did not.

    Results
    Women were significantly overrepresented in the mild variant group (proportion, 0.59; 95% CI, 0.56-0.62; P < .001) but not in the nonmild variant group (proportion, 0.50; 95% CI, 0.46-0.54; P = .89). Sensitivity analyses confirmed these results. Subgroup analyses on mild variants showed differences in the proportions of women. Furthermore, in the Radboudumc database, the proportion of adult women among individuals with ABCA4-associated retinopathy (652/1154 = 0.56) was 0.10 (95% CI, 0.05-0.15) higher than among individuals with other retinopathies (280/602 = 0.47).

    Conclusions and Relevance
    This meta-analysis supports the likelihood that sex is a modifier in developing ABCA4-associated retinopathy for individuals with a mild ABCA4 allele. This finding may be relevant for prognosis predictions and recurrence risks for individuals with ABCA4-associated retinopathy. Future studies should further investigate whether the overrepresentation of women is caused by differences in the disease mechanism, by differences in health care–seeking behavior, or by health care discrimination between women and men with ABCA4-AR.
  • Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P. Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P., Conrod, P. J., Crivello, F., Crone, E. A., Dannlowski, U., Davey, C. G., De Haan, L., De Zubicaray, G. I., Di Giorgio, A., Fisch, L., Fisher, S. E., Franke, B., Glahn, D. C., Grotegerd, D., Gruber, O., Gur, R. E., Gur, R. C., Hahn, T., Harrison, B. J., Hatton, S., Hickie, I. B., Hulshoff Pol, H. E., Jamieson, A. J., Jernigan, T. L., Jiang, J., Kalnin, A. J., Kang, S., Kochan, N. A., Kraus, A., Lagopoulos, J., Lazaro, L., McDonald, B. C., McDonald, C., McMahon, K. L., Mwangi, B., Piras, F., Rodriguez‐Cruces, R., Royer, J., Sachdev, P. S., Satterthwaite, T. D., Saykin, A. J., Schumann, G., Sevaggi, P., Smoller, J. W., Soares, J. C., Spalletta, G., Tamnes, C. K., Trollor, J. N., Van't Ent, D., Vecchio, D., Walter, H., Wang, Y., Weber, B., Wen, W., Wierenga, L. M., Williams, S. C. R., Wu, M., Zunta‐Soares, G. B., Bernhardt, B., Thompson, P., Frangou, S., Ge, R., & ENIGMA-Lifespan Working Group (2024). Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size. Human Brain Mapping, 45(10): e26768. doi:10.1002/hbm.26768.

    Abstract

    Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.
  • Dang, A., Raviv, L., & Galke, L. (2024). Testing the linguistic niche hypothesis in large with a multilingual Wug test. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 91-93). Nijmegen: The Evolution of Language Conferences.
  • Dang, A., Raviv, L., & Galke, L. (2024). Morphology matters: Probing the cross-linguistic morphological generalization abilities of large language models through a Wug Test. In CMCL 2024 - 13th Edition of the Workshop on Cognitive Modeling and Computational Linguistics, Proceedings of the Workshop (pp. 177-188). Kerrville, TX, USA: Association for Computational Linguistics (ACL).
  • Den Hoed, J., Hashimoto, H., Khan, M., Semmekrot, F., Bosanko, K. A., Abe-Hatano, C., Nakagawa, E., Venselaar, H., Quercia, N., Chad, L., Kurosaka, H., Rondeau, S., Fisher, S. E., Yamamoto, S., & Zarate, Y. A. (2024). Pathogenic SATB2 missense variants affecting p.Gly392 have variable functional implications and result in diverse clinical phenotypes. Journal of Medical Genetics, 61, 1062-1067. doi:10.1136/jmg-2024-110015.

    Abstract

    SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.

    In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2–16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype–phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype–phenotype correlations are needed.
  • Eising, E., Vino, A., Mabie, H. L., Campbell, T. F., Shriberg, L. D., & Fisher, S. E. (2024). Genome sequencing of idiopathic speech delay. Human Mutation, 2024: 9692863. doi:10.1155/2024/9692863.

    Abstract

    Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.

    Additional information

    supplemental table
  • Engelen, M. M., Franken, M.-C.-J.-P., Stipdonk, L. W., Horton, S. E., Jackson, V. E., Reilly, S., Morgan, A. T., Fisher, S. E., Van Dulmen, S., & Eising, E. (2024). The association between stuttering burden and psychosocial aspects of life in adults. Journal of Speech, Language, and Hearing Research, 67(5), 1385-1399. doi:10.1044/2024_JSLHR-23-00562.

    Abstract

    Purpose:
    Stuttering is a speech condition that can have a major impact on a person's quality of life. This descriptive study aimed to identify subgroups of people who stutter (PWS) based on stuttering burden and to investigate differences between these subgroups on psychosocial aspects of life.

    Method:
    The study included 618 adult participants who stutter. They completed a detailed survey examining stuttering symptomatology, impact of stuttering on anxiety, education and employment, experience of stuttering, and levels of depression, anxiety, and stress. A two-step cluster analytic procedure was performed to identify subgroups of PWS, based on self-report of stuttering frequency, severity, affect, and anxiety, four measures that together inform about stuttering burden.

    Results:
    We identified a high- (n = 230) and a low-burden subgroup (n = 372). The high-burden subgroup reported a significantly higher impact of stuttering on education and employment, and higher levels of general depression, anxiety, stress, and overall impact of stuttering. These participants also reported that they trialed more different stuttering therapies than those with lower burden.

    Conclusions:
    Our results emphasize the need to be attentive to the diverse experiences and needs of PWS, rather than treating them as a homogeneous group. Our findings also stress the importance of personalized therapeutic strategies for individuals with stuttering, considering all aspects that could influence their stuttering burden. People with high-burden stuttering might, for example, have a higher need for psychological therapy to reduce stuttering-related anxiety. People with less emotional reactions but severe speech distortions may also have a moderate to high burden, but they may have a higher need for speech techniques to communicate with more ease. Future research should give more insights into the therapeutic needs of people highly burdened by their stuttering.
  • Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U. Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U., Grotegerd, D., Gruber, O., Hulshoff Pol, H. E., Schumann, G., Tamnes, C. K., Walter, H., Wierenga, L. M., Jahanshad, N., Thompson, P. M., Frangou, S., & ENIGMA Lifespan Working Group (2024). Normative modelling of brain morphometry across the lifespan with CentileBrain: Algorithm benchmarking and model optimisation. The Lancet Digital Health, 6(3), e211-e221. doi:10.1016/S2589-7500(23)00250-9.

    Abstract

    The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.
  • Galke, L., Ram, Y., & Raviv, L. (2024). Learning pressures and inductive biases in emergent communication: Parallels between humans and deep neural networks. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 197-201). Nijmegen: The Evolution of Language Conferences.
  • Galke, L., Ram, Y., & Raviv, L. (2024). Deep neural networks and humans both benefit from compositional language structure. Nature Communications, 15: 10816. doi:10.1038/s41467-024-55158-1.

    Abstract

    Deep neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to systematically produce forms for new meanings. For humans, languages with more compositional and transparent structures are typically easier to learn than those with opaque and irregular structures. However, this learnability advantage has not yet been shown for deep neural networks, limiting their use as models for human language learning. Here, we directly test how neural networks compare to humans in learning and generalizing different languages that vary in their degree of compositional structure. We evaluate the memorization and generalization capabilities of a large language model and recurrent neural networks, and show that both deep neural networks exhibit a learnability advantage for more structured linguistic input: neural networks exposed to more compositional languages show more systematic generalization, greater agreement between different agents, and greater similarity to human learners.
  • García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A. García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A., Bis, J. C., Boks, M. P. M., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Burkhardt, R., Cahn, W., Calhoun, V. D., Carmichael, O. T., Chakravarty, M., Chen, Q., Ching, C. R. K., Cichon, S., Crespo-Facorro, B., Crivello, F., Dale, A. M., Smith, G. D., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Debette, S., DeCarli, C., Depondt, C., Desrivières, S., Djurovic, S., Ehrlich, S., Erk, S., Espeseth, T., Fernández, G., Filippi, I., Fisher, S. E., Fleischman, D. A., Fletcher, E., Fornage, M., Forstner, A. J., Francks, C., Franke, B., Ge, T., Goldman, A. L., Grabe, H. J., Green, R. C., Grimm, O., Groenewold, N. A., Gruber, O., Gudnason, V., Håberg, A. K., Haukvik, U. K., Heinz, A., Hibar, D. P., Hilal, S., Himali, J. J., Ho, B.-C., Hoehn, D. F., Hoekstra, P. J., Hofer, E., Hoffmann, W., Holmes, A. J., Homuth, G., Hosten, N., Ikram, M. K., Ipser, J. C., Jack Jr, C. R., Jahanshad, N., Jönsson, E. G., Kahn, R. S., Kanai, R., Klein, M., Knol, M. J., Launer, L. J., Lawrie, S. M., Le Hellard, S., Lee, P. H., Lemaître, H., Li, S., Liewald, D. C. M., Lin, H., Longstreth Jr, W. T., Lopez, O. L., Luciano, M., Maillard, P., Marquand, A. F., Martin, N. G., Martinot, J.-L., Mather, K. A., Mattay, V. S., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mirza-Schreiber, N., Milaneschi, Y., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Muñoz Maniega, S., Nauck, M., Nho, K., Niessen, W. J., Nöthen, M. M., Nyquist, P. A., Oosterlaan, J., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Psaty, B. M., Pütz, B., Reppermund, S., Rietschel, M. D., Risacher, S. L., Romanczuk-Seiferth, N., Romero-Garcia, R., Roshchupkin, G. V., Rotter, J. I., Sachdev, P. S., Sämann, P. G., Saremi, A., Sargurupremraj, M., Saykin, A. J., Schmaal, L., Schmidt, H., Schmidt, R., Schofield, P. R., Scholz, M., Schumann, G., Schwarz, E., Shen, L., Shin, J., Sisodiya, S. M., Smith, A. V., Smoller, J. W., Soininen, H. S., Steen, V. M., Stein, D. J., Stein, J. L., Thomopoulos, S. I., Toga, A., Tordesillas-Gutiérrez, D. T., Trollor, J. N., Valdes-Hernandez, M. C., Van 't Ent, D., Van Bokhoven, H., Van der Meer, D., Van der Wee, N. J. A., Vázquez-Bourgon, J., Veltman, D. J., Vernooij, M. W., Villringer, A., Vinke, L. N., Völzke, H., Walter, H., Wardlaw, J. M., Weinberger, D. R., Weiner, M. W., Wen, W., Westlye, L. T., Westman, E., White, T., Witte, A. V., Wolf, C., Yang, J., Zwiers, M. P., Ikram, M. A., Seshadri, S., Thompson, P. M., Satizabal, C. L., Medland, S. E., & Rentería, M. E. (2024). Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for brain variation across ancestries. Nature Genetics, 56, 2333-2344. doi:10.1038/s41588-024-01951-z.

    Abstract

    Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
  • Goltermann*, O., Alagöz*, G., Molz, B., & Fisher, S. E. (2024). Neuroimaging genomics as a window into the evolution of human sulcal organization. Cerebral Cortex, 34(3): bhae078. doi:10.1093/cercor/bhae078.

    Abstract

    * Ole Goltermann and Gökberk Alagöz contributed equally.
    Primate brain evolution has involved prominent expansions of the cerebral cortex, with largest effects observed in the human lineage. Such expansions were accompanied by fine-grained anatomical alterations, including increased cortical folding. However, the molecular bases of evolutionary alterations in human sulcal organization are not yet well understood. Here, we integrated data from recently completed large-scale neuroimaging genetic analyses with annotations of the human genome relevant to various periods and events in our evolutionary history. These analyses identified single-nucleotide polymorphism (SNP) heritability enrichments in fetal brain human-gained enhancer (HGE) elements for a number of sulcal structures, including the central sulcus, which is implicated in human hand dexterity. We zeroed in on a genomic region that harbors DNA variants associated with left central sulcus shape, an HGE element, and genetic loci involved in neurogenesis including ZIC4, to illustrate the value of this approach for probing the complex factors contributing to human sulcal evolution.

    Additional information

    supplementary data link to preprint
  • Grönberg, D. J., Pinto de Carvalho, S. L., Dernerova, N., Norton, P., Wong, M. M. K., & Mendoza, E. (2024). Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Scientific Reports, 14: 29057. doi:10.1038/s41598-024-75353-w.

    Abstract

    Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.

    Additional information

    supplementary material
  • Grosseck, O., Perlman, M., Ortega, G., & Raviv, L. (2024). The iconic affordances of gesture and vocalization in emerging languages in the lab. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 223-225). Nijmegen: The Evolution of Language Conferences.
  • Hegemann, L., Corfield, E. C., Askelund, A. D., Allegrini, A. G., Askeland, R. B., Ronald, A., Ask, H., St Pourcain, B., Andreassen, O. A., Hannigan, L. J., & Havdahl, A. (2024). Genetic and phenotypic heterogeneity in early neurodevelopmental traits in the Norwegian Mother, Father and Child Cohort Study. Molecular Autism, 15: 25. doi:10.1186/s13229-024-00599-0.

    Abstract

    Background
    Autism and different neurodevelopmental conditions frequently co-occur, as do their symptoms at sub-diagnostic threshold levels. Overlapping traits and shared genetic liability are potential explanations.

    Methods
    In the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), we leverage item-level data to explore the phenotypic factor structure and genetic architecture underlying neurodevelopmental traits at age 3 years (N = 41,708–58,630) using maternal reports on 76 items assessing children’s motor and language development, social functioning, communication, attention, activity regulation, and flexibility of behaviors and interests.

    Results
    We identified 11 latent factors at the phenotypic level. These factors showed associations with diagnoses of autism and other neurodevelopmental conditions. Most shared genetic liabilities with autism, ADHD, and/or schizophrenia. Item-level GWAS revealed trait-specific genetic correlations with autism (items rg range = − 0.27–0.78), ADHD (items rg range = − 0.40–1), and schizophrenia (items rg range = − 0.24–0.34). We find little evidence of common genetic liability across all neurodevelopmental traits but more so for several genetic factors across more specific areas of neurodevelopment, particularly social and communication traits. Some of these factors, such as one capturing prosocial behavior, overlap with factors found in the phenotypic analyses. Other areas, such as motor development, seemed to have more heterogenous etiology, with specific traits showing a less consistent pattern of genetic correlations with each other.

    Conclusions
    These exploratory findings emphasize the etiological complexity of neurodevelopmental traits at this early age. In particular, diverse associations with neurodevelopmental conditions and genetic heterogeneity could inform follow-up work to identify shared and differentiating factors in the early manifestations of neurodevelopmental traits and their relation to autism and other neurodevelopmental conditions. This in turn could have implications for clinical screening tools and programs.
  • Heim, F., Scharff, C., Fisher, S. E., Riebel, K., & Ten Cate, C. (2024). Auditory discrimination learning and acoustic cue weighing in female zebra finches with localized FoxP1 knockdowns. Journal of Neurophysiology, 131, 950-963. doi:10.1152/jn.00228.2023.

    Abstract

    Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.

    NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.
  • Horton, S., Jackson, V., Boyce, J., Franken, M.-C., Siemers, S., St John, M., Hearps, S., Van Reyk, O., Braden, R., Parker, R., Vogel, A. P., Eising, E., Amor, D. J., Irvine, J., Fisher, S. E., Martin, N. G., Reilly, S., Bahlo, M., Scheffer, I., & Morgan, A. (2024). Self-reported stuttering severity is accurate: Informing methods for large-scale data collection in stuttering. Journal of Speech, Language, and Hearing Research, 67, 4015-4024. doi:10.1044/2023_JSLHR-23-00081.

    Abstract

    Purpose:
    To our knowledge, there are no data examining the agreement between self-reported and clinician-rated stuttering severity. In the era of big data, self-reported ratings have great potential utility for large-scale data collection, where cost and time preclude in-depth assessment by a clinician. Equally, there is increasing emphasis on the need to recognize an individual's experience of their own condition. Here, we examined the agreement between self-reported stuttering severity compared to clinician ratings during a speech assessment. As a secondary objective, we determined whether self-reported stuttering severity correlated with an individual's subjective impact of stuttering.

    Method:
    Speech-language pathologists conducted face-to-face speech assessments with 195 participants (137 males) aged 5–84 years, recruited from a cohort of people with self-reported stuttering. Stuttering severity was rated on a 10-point scale by the participant and by two speech-language pathologists. Participants also completed the Overall Assessment of the Subjective Experience of Stuttering (OASES). Clinician and participant ratings were compared. The association between stuttering severity and the OASES scores was examined.

    Results:
    There was a strong positive correlation between speech-language pathologist and participant-reported ratings of stuttering severity. Participant-reported stuttering severity correlated weakly with the four OASES domains and with the OASES overall impact score.

    Conclusions:
    Participants were able to accurately rate their stuttering severity during a speech assessment using a simple one-item question. This finding indicates that self-report stuttering severity is a suitable method for large-scale data collection. Findings also support the collection of self-report subjective experience data using questionnaires, such as the OASES, which add vital information about the participants' experience of stuttering that is not captured by overt speech severity ratings alone.
  • De Hoyos, L., Barendse, M. T., Schlag, F., Van Donkelaar, M. M. J., Verhoef, E., Shapland, C. Y., Klassmann, A., Buitelaar, J., Verhulst, B., Fisher, S. E., Rai, D., & St Pourcain, B. (2024). Structural models of genome-wide covariance identify multiple common dimensions in autism. Nature Communications, 15: 1770. doi:10.1038/s41467-024-46128-8.

    Abstract

    Common genetic variation has been associated with multiple symptoms in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we developed a structural equation modelling framework to directly model genome-wide covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent using a case-only design. We identified three independent genetic factors most strongly linked to language/cognition, behaviour and motor development, respectively, when studying a population-representative sample (N=5,331). These analyses revealed novel associations. For example, developmental delay in acquiring personal-social skills was inversely related to language, while developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-specific patterns, to phenotypic heterogeneity.
  • Jansen, M. G., Zwiers, M. P., Marques, J. P., Chan, K.-S., Amelink, J., Altgassen, M., Oosterman, J. M., & Norris, D. G. (2024). The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study protocol and rationale. PLOS ONE, 19(6): e0306006. doi:10.1371/journal.pone.0306006.

    Abstract

    To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18–80 years, stratified by age decade and sex (median age 52, IQR 36–66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.
  • Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of variation in language evolution. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 286-289). Nijmegen: The Evolution of Language Conferences.
  • Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of language evolution in heterogeneous populations. Cognitive Science: a multidisciplinary journal, 48(11): e70011. doi:10.1111/cogs.70011.

    Abstract

    Variations in language abilities, use, and production style are ubiquitous within any given population. While research on language evolution has traditionally overlooked the potential importance of such individual differences, these can have an important impact on the trajectory of language evolution and ongoing change. To address this gap, we use a group communication game for studying this mechanism in the lab, in which micro-societies of interacting participants develop and use artificial languages to successfully communicate with each other. Importantly, one participant in the group is assigned a keyboard with a limited inventory of letters (simulating a speech impairment that individuals may encounter in real life), forcing them to communicate differently than the rest. We test how languages evolve in such heterogeneous groups and whether they adapt to accommodate the unique characteristics of individuals with language idiosyncrasies. Our results suggest that language evolves differently in groups where some individuals have distinct language abilities, eliciting more innovative elements at the cost of reduced communicative success and convergence. Furthermore, we observed strong partner-specific accommodation to the minority individual, which carried over to the group level. Importantly, the degree of group-wide adaptation was not uniform and depended on participants’ attachment to established language forms. Our findings provide compelling evidence that individual differences can permeate and accumulate within a linguistic community, ultimately driving changes in languages over time. They also underscore the importance of integrating individual differences into future research on language evolution.

    Additional information

    full analyses and plots
  • Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K. Knol, M. J., Poot, R. A., Evans, T. E., Satizabal, C. L., Mishra, A., Sargurupremraj, M., Van der Auwera, S., Duperron, M.-G., Jian, X., Hostettler, I. C., Van Dam-Nolen, D. H. K., Lamballais, S., Pawlak, M. A., Lewis, C. E., Carrion Castillo, A., Van Erp, T. G. M., Reinbold, C. S., Shin, J., Sholz, M., Håberg, A. K., Kämpe, A., Li, G. H. Y., Avinun, R., Atkins, J. R., Hsu, F.-C., Amod, A. R., Lam, M., Tsuchida, A., Teunissen, M. W. A., Aygün, N., Patel, Y., Liang, D., Beiser, A. S., Beyer, F., Bis, J. C., Bos, D., Bryan, R. N., Bülow, R., Caspers, S., Catheline, G., Cecil, C. A. M., Dalvie, S., Dartigues, J.-F., DeCarli, C., Enlund-Cerullo, M., Ford, J. M., Franke, B., Freedman, B. I., Friedrich, N., Green, M. J., Haworth, S., Helmer, C., Hoffmann, P., Homuth, G., Ikram, M. K., Jack, C. R., Jahanshad, N., Jockwitz, C., Kamatani, Y., Knodt, A. R., Li, S., Lim, K., Longstreth, W. T., Macciardi, F., The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, The Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium, Mäkitie, O., Mazoyer, B., Medland, S. E., Miyamoto, S., Moebus, S., Mosley, T. H., Muetzel, R., Mühleisen, T. W., Nagata, M., Nakahara, S., Palmer, N. D., Pausova, Z., Preda, A., Quidé, Y., Reay, W. R., Roshchupkin, G. V., Schmidt, R., Schreiner, P. J., Setoh, K., Shapland, C. Y., Sidney, S., St Pourcain, B., Stein, J. L., Tabara, Y., Teumer, A., Uhlmann, A., Van de Lught, A., Vernooij, M. W., Werring, D. J., Windham, B. G., Witte, A. V., Wittfeld, K., Yang, Q., Yoshida, K., Brunner, H. G., Le Grand, Q., Sim, K., Stein, D. J., Bowden, D. W., Cairns, M. J., Hariri, A. R., Cheung, C.-L., Andersson, S., Villringer, A., Paus, T., Chichon, S., Calhoun, V. D., Crivello, F., Launer, L. J., White, T., Koudstaal, P. J., Houlden, H., Fornage, M., Matsuda, F., Grabe, H. J., Ikram, M. A., Debette, S., Thompson, P. M., Seshadri, S., & Adams, H. H. H. (2024). Genetic variants for head size share genes and pathways with cancer. Cell Reports Medicine, 5(5): 101529. doi:10.1016/j.xcrm.2024.101529.

    Abstract

    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.

    Additional information

    link to supplemental information
  • Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S. Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S., Gruner, P., Sorensen, L., Pan, P. M., Silk, T. J., Gur, R. C., Cubillo, A. I., Haavik, J., O'Gorman Tuura, R. L., Hartman, C. A., Calvo, R., McGrath, J., Calderoni, S., Jackowski, A., Chantiluke, K. C., Satterthwaite, T. D., Busatto, G. F., Nigg, J. T., Gur, R. E., Retico, A., Tosetti, M., Gallagher, L., Szeszko, P. R., Neufeld, J., Ortiz, A. E., Ghisleni, C., Lazaro, L., Hoekstra, P. J., Anagnostou, E., Hoekstra, L., Simpson, B., Plessen, J. K., Deruelle, C., Soreni, N., James, A., Narayanaswamy, J., Reddy, J. Y. C., Fitzgerald, J., Bellgrove, M. A., Salum, G. A., Janssen, J., Muratori, F., Vila, M., Garcia Giral, M., Ameis, S. H., Bosco, P., Lundin Remnélius, K., Huyser, C., Pariente, J. C., Jalbrzikowski, M., Rosa, P. G. P., O'Hearn, K. M., Ehrlich, S., Mollon, J., Zugman, A., Christakou, A., Arango, C., Fisher, S. E., Kong, X., Franke, B., Medland, S. E., Thomopoulos, S. I., Jahanshad, N., Glahn, D. C., Thompson, P. M., Francks, C., & Luders, E. (2024). Large-scale analysis of structural brain asymmetries during neurodevelopment: Age effects and sex differences in 4,265 children and adolescents. Human Brain Mapping, 45(11): e26754. doi:10.1002/hbm.26754.

    Abstract

    Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
  • Lammertink, I., De Heer Kloots, M., Bazioni, M., & Raviv, L. (2024). Learnability effects in children: Are more structured languages easier to learn? In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 320-323). Nijmegen: The Evolution of Language Conferences.
  • Lupyan, G., & Raviv, L. (2024). A cautionary note on sociodemographic predictors of linguistic complexity: Different measures and different analyses lead to different conclusions. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 345-348). Nijmegen: The Evolution of Language Conferences.
  • Melnychuk, T., Galke, L., Seidlmayer, E., Bröring, S., Förstner, K. U., Tochtermann, K., & Schultz, C. (2024). Development of similarity measures from graph-structured bibliographic metadata: An application to identify scientific convergence. IEEE Transactions on Engineering Management, 71, 9171 -9187. doi:10.1109/TEM.2023.3308008.

    Abstract

    Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.
  • Motiekaitytė, K., Grosseck, O., Wolf, L., Bosker, H. R., Peeters, D., Perlman, M., Ortega, G., & Raviv, L. (2024). Iconicity and compositionality in emerging vocal communication systems: a Virtual Reality approach. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 387-389). Nijmegen: The Evolution of Language Conferences.
  • Oblong, L. M., Soheili-Nezhad, S., Trevisan, N., Shi, Y., Beckmann, C. F., & Sprooten, E. (2024). Principal and independent genomic components of brain structure and function. Genes, Brain and Behavior, 23(1): e12876. doi:10.1111/gbb.12876.

    Abstract

    The highly polygenic and pleiotropic nature of behavioural traits, psychiatric disorders and structural and functional brain phenotypes complicate mechanistic interpretation of related genome-wide association study (GWAS) signals, thereby obscuring underlying causal biological processes. We propose genomic principal and independent component analysis (PCA, ICA) to decompose a large set of univariate GWAS statistics of multimodal brain traits into more interpretable latent genomic components. Here we introduce and evaluate this novel methods various analytic parameters and reproducibility across independent samples. Two UK Biobank GWAS summary statistic releases of 2240 imaging-derived phenotypes (IDPs) were retrieved. Genome-wide beta-values and their corresponding standard-error scaled z-values were decomposed using genomic PCA/ICA. We evaluated variance explained at multiple dimensions up to 200. We tested the inter-sample reproducibility of output of dimensions 5, 10, 25 and 50. Reproducibility statistics of the respective univariate GWAS served as benchmarks. Reproducibility of 10-dimensional PCs and ICs showed the best trade-off between model complexity and robustness and variance explained (PCs: |rz − max| = 0.33, |rraw − max| = 0.30; ICs: |rz − max| = 0.23, |rraw − max| = 0.19). Genomic PC and IC reproducibility improved substantially relative to mean univariate GWAS reproducibility up to dimension 10. Genomic components clustered along neuroimaging modalities. Our results indicate that genomic PCA and ICA decompose genetic effects on IDPs from GWAS statistics with high reproducibility by taking advantage of the inherent pleiotropic patterns. These findings encourage further applications of genomic PCA and ICA as fully data-driven methods to effectively reduce the dimensionality, enhance the signal to noise ratio and improve interpretability of high-dimensional multitrait genome-wide analyses.
  • Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S. Ozaki, Y., Tierney, A., Pfordresher, P. Q., McBride, J., Benetos, E., Proutskova, P., Chiba, G., Liu, F., Jacoby, N., Purdy, S. C., Opondo, P., Fitch, W. T., Hegde, S., Rocamora, M., Thorne, R., Nweke, F., Sadaphal, D. P., Sadaphal, P. M., Hadavi, S., Fujii, S., Choo, S., Naruse, M., Ehara, U., Sy, L., Lenini Parselelo, M., Anglada-Tort, M., Hansen, N. C., Haiduk, F., Færøvik, U., Magalhães, V., Krzyżanowski, W., Shcherbakova, O., Hereld, D., Barbosa, B. S., Correa Varella, M. A., Van Tongeren, M., Dessiatnitchenko, P., Zar Zar, S., El Kahla, I., Muslu, O., Troy, J., Lomsadze, T., Kurdova, D., Tsope, C., Fredriksson, D., Arabadjiev, A., Sarbah, J. P., Arhine, A., Ó Meachair, T., Silva-Zurita, J., Soto-Silva, I., Muñoz Millalonco, N. E., Ambrazevičius, R., Loui, P., Ravignani, A., Jadoul, Y., Larrouy-Maestri, P., Bruder, C., Teyxokawa, T. P., Kuikuro, U., Natsitsabui, R., Sagarzazu, N. B., Raviv, L., Zeng, M., Varnosfaderani, S. D., Gómez-Cañón, J. S., Kolff, K., Vanden Bosch der Nederlanden, C., Chhatwal, M., David, R. M., Putu Gede Setiawan, I., Lekakul, G., Borsan, V. N., Nguqu, N., & Savage, P. E. (2024). Globally, songs and instrumental melodies are slower, higher, and use more stable pitches than speech: A Registered Report. Science Advances, 10(20): eadm9797. doi:10.1126/sciadv.adm9797.

    Abstract

    Both music and language are found in all known human societies, yet no studies have compared similarities and differences between song, speech, and instrumental music on a global scale. In this Registered Report, we analyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, recited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and (ii) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages. Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch, (ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval size and (v) timbral brightness. Exploratory analyses suggest that features vary along a “musi-linguistic” continuum when including instrumental melodies and recited lyrics. Our study provides strong empirical evidence of cross-cultural regularities in music and speech.

    Additional information

    supplementary materials
  • Perugini, A., Fontanillas, P., Gordon, S. D., Fisher, S. E., Martin, N. G., Bates, T. C., & Luciano, M. (2024). Dyslexia polygenic scores show heightened prediction of verbal working memory and arithmetic. Scientific Studies of Reading, 28(5), 549-563. doi:10.1080/10888438.2024.2365697.

    Abstract

    Purpose

    The aim of this study is to establish which specific cognitive abilities are phenotypically related to reading skill in adolescence and determine whether this phenotypic correlation is explained by polygenetic overlap.

    Method

    In an Australian population sample of twins and non-twin siblings of European ancestry (734 ≤ N ≤ 1542 [50.7% < F < 66%], mean age = 16.7, range = 11–28 years) from the Brisbane Adolescent Twin Study, mixed-effects models were used to test the association between a dyslexia polygenic score (based on genome-wide association results from a study of 51,800 dyslexics versus >1 million controls) and quantitative cognitive measures. The variance in the cognitive measure explained by the polygenic score was compared to that explained by a reading difficulties phenotype (scores that were lower than 1.5 SD below the mean reading skill) to derive the proportion of the association due to genetic influences.

    Results

    The strongest phenotypic correlations were between poor reading and verbal tests (R2 up to 6.2%); visuo-spatial working memory was the only measure that did not show association with poor reading. Dyslexia polygenic scores could completely explain the phenotypic covariance between poor reading and most working memory tasks and were most predictive of performance on a test of arithmetic (R2=2.9%).

    Conclusion

    Shared genetic pathways are thus highlighted for the commonly found association between reading and mathematics abilities, and for the verbal short-term/working memory deficits often observed in dyslexia.

    Additional information

    supplementary materials
  • de Reus, K., Benítez-Burraco, A., Hersh, T. A., Groot, N., Lambert, M. L., Slocombe, K. E., Vernes, S. C., & Raviv, L. (2024). Self-domestication traits in vocal learning mammals. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 105-108). Nijmegen: The Evolution of Language Conferences.
  • Schijven, D., Soheili-Nezhad, S., Fisher, S. E., & Francks, C. (2024). Exome-wide analysis implicates rare protein-altering variants in human handedness. Nature Communications, 15: 2632. doi:10.1038/s41467-024-46277-w.

    Abstract

    Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
  • Seidlmayer, E., Melnychuk, T., Galke, L., Kühnel, L., Tochtermann, K., Schultz, C., & Förstner, K. U. (2024). Research topic displacement and the lack of interdisciplinarity: Lessons from the scientific response to COVID-19. Scientometrics, 129, 5141-5179. doi:10.1007/s11192-024-05132-x.

    Abstract

    Based on a large-scale computational analysis of scholarly articles, this study investigates the dynamics of interdisciplinary research in the first year of the COVID-19 pandemic. Thereby, the study also analyses the reorientation effects away from other topics that receive less attention due to the high focus on the COVID-19 pandemic. The study aims to examine what can be learned from the (failing) interdisciplinarity of coronavirus research and its displacing effects for managing potential similar crises at the scientific level. To explore our research questions, we run several analyses by using the COVID-19++ dataset, which contains scholarly publications, preprints from the field of life sciences, and their referenced literature including publications from a broad scientific spectrum. Our results show the high impact and topic-wise adoption of research related to the COVID-19 crisis. Based on the similarity analysis of scientific topics, which is grounded on the concept embedding learning in the graph-structured bibliographic data, we measured the degree of interdisciplinarity of COVID-19 research in 2020. Our findings reveal a low degree of research interdisciplinarity. The publications’ reference analysis indicates the major role of clinical medicine, but also the growing importance of psychiatry and social sciences in COVID-19 research. A social network analysis shows that the authors’ high degree of centrality significantly increases her or his degree of interdisciplinarity.
  • Serio, B., Hettwer, M. D., Wiersch, L., Bignardi, G., Sacher, J., Weis, S., Eickhoff, S. B., & Valk, S. L. (2024). Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nature Communications, 15: 7714. doi:10.1038/s41467-024-51942-1.

    Abstract

    Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.

    Additional information

    41467_2024_51942_MOESM1_ESM.pdf
  • Soheili-Nezhad, S., Ibáñez-Solé, O., Izeta, A., Hoeijmakers, J. H. J., & Stoeger, T. (2024). Time is ticking faster for long genes in aging. Trends in Genetics, 40(4), 299-312. doi:10.1016/j.tig.2024.01.009.

    Abstract

    Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer’s disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
  • Soheili-Nezhad, S., Schijven, D., Mars, R. B., Fisher, S. E., & Francks, C. (2024). Distinct impact modes of polygenic disposition to dyslexia in the adult brain. Science Advances, 10(51): eadq2754. doi:10.1126/sciadv.adq2754.

    Abstract

    Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain size, and especially reduced volume and/or altered fiber density in networks involved in motor control, language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct patterns of association with brain structural features. Independent component analysis applied to brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition in terms of brain-wide associations, with microstructure of the internal capsule consistently implicated. In contrast, lower volume of the primary motor cortex was only associated with higher dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with respect to other genetically correlated traits.

    Additional information

    link to preprint
  • Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O. Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O., Saffery, R., Bønnelykke, K., Reilly, S., Pennell, C. E., Wake, M., Cecil, C. A., Plomin, R., Fisher, S. E., & St Pourcain, B. (2024). Genome-wide analyses of vocabulary size in infancy and toddlerhood: Associations with Attention-Deficit/Hyperactivity Disorder and cognition-related traits. Biological Psychiatry, 95(1), 859-869. doi:10.1016/j.biopsych.2023.11.025.

    Abstract

    Background

    The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD).

    Methods

    We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models.

    Results

    Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity.

    Conclusions

    The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.
  • Wesseldijk, L. W., Henechowicz, T. L., Baker, D. J., Bignardi, G., Karlsson, R., Gordon, R. L., Mosing, M. A., Ullén, F., & Fisher, S. E. (2024). Notes from Beethoven’s genome. Current Biology, 34(6), R233-R234. doi:10.1016/j.cub.2024.01.025.

    Abstract

    Rapid advances over the last decade in DNA sequencing and statistical genetics enable us to investigate the genomic makeup of individuals throughout history. In a recent notable study, Begg et al.1 used Ludwig van Beethoven’s hair strands for genome sequencing and explored genetic predispositions for some of his documented medical issues. Given that it was arguably Beethoven’s skills as a musician and composer that made him an iconic figure in Western culture, we here extend the approach and apply it to musicality. We use this as an example to illustrate the broader challenges of individual-level genetic predictions.

    Additional information

    supplemental information
  • Wong, M. M. K., Sha, Z., Lütje, L., Kong, X., Van Heukelum, S., Van de Berg, W. D. J., Jonkman, L. E., Fisher, S. E., & Francks, C. (2024). The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. Proceedings of the National Academy of Sciences of the United States of America, 121(34): e2401687121. doi:10.1073/pnas.2401687121.

    Abstract

    The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here we generated a new gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with inter-individual variation in structural connectivity between left-hemisphere frontal and temporal language cortex, and with predisposition to dyslexia. The axon guidance genes SLIT1 and SLIT2 were consistently implicated. These findings identify region-specific patterns of laminar gene expression as a feature of the brain’s language network.
  • Zhou, H., Van der Ham, S., De Boer, B., Bogaerts, L., & Raviv, L. (2024). Modality and stimulus effects on distributional statistical learning: Sound vs. sight, time vs. space. Journal of Memory and Language, 138: 104531. doi:10.1016/j.jml.2024.104531.

    Abstract

    Statistical learning (SL) is postulated to play an important role in the process of language acquisition as well as in other cognitive functions. It was found to enable learning of various types of statistical patterns across different sensory modalities. However, few studies have distinguished distributional SL (DSL) from sequential and spatial SL, or examined DSL across modalities using comparable tasks. Considering the relevance of such findings to the nature of SL, the current study investigated the modality- and stimulus-specificity of DSL. Using a within-subject design we compared DSL performance in auditory and visual modalities. For each sensory modality, two stimulus types were used: linguistic versus non-linguistic auditory stimuli and temporal versus spatial visual stimuli. In each condition, participants were exposed to stimuli that varied in their length as they were drawn from two categories (short versus long). DSL was assessed using a categorization task and a production task. Results showed that learners’ performance was only correlated for tasks in the same sensory modality. Moreover, participants were better at categorizing the temporal signals in the auditory conditions than in the visual condition, where in turn an advantage of the spatial condition was observed. In the production task participants exaggerated signal length more for linguistic signals than non-linguistic signals. Together, these findings suggest that DSL is modality- and stimulus-sensitive.

    Additional information

    link to preprint
  • Anderson, P., Harandi, N. M., Moisik, S. R., Stavness, I., & Fels, S. (2015). A comprehensive 3D biomechanically-driven vocal tract model including inverse dynamics for speech research. In Proceedings of Interspeech 2015: The 16th Annual Conference of the International Speech Communication Association (pp. 2395-2399).

    Abstract

    We introduce a biomechanical model of oropharyngeal structures that adds the soft-palate, pharynx, and larynx to our previous models of jaw, skull, hyoid, tongue, and face in a unified model. The model includes a comprehensive description of the upper airway musculature, using point-to-point muscles that may either be embedded within the deformable structures or operate exter- nally. The airway is described by an air-tight mesh that fits and deforms with the surrounding articulators, which enables dynamic coupling to our articulatory speech synthesizer. We demonstrate that the biomechanics, in conjunction with the skinning, supports a range from physically realistic to simplified vocal tract geometries to investigate different approaches to aeroacoustic modeling of vocal tract. Furthermore, our model supports inverse modeling to support investigation of plausible muscle activation patterns to generate speech.
  • Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2015). A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer. Molecular Cytogenetics, 8: 69. doi:10.1186/s13039-015-0173-0.

    Abstract

    Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype.
  • Brucato, N., Guadalupe, T., Franke, B., Fisher, S. E., & Francks, C. (2015). A schizophrenia-associated HLA locus affects thalamus volume and asymmetry. Brain, Behavior, and Immunity, 46, 311-318. doi:10.1016/j.bbi.2015.02.021.

    Abstract

    Genes of the Major Histocompatibility Complex (MHC) have recently been shown to have neuronal functions in the thalamus and hippocampus. Common genetic variants in the Human Leukocyte Antigens (HLA) region, human homologue of the MHC locus, are associated with small effects on susceptibility to schizophrenia, while volumetric changes of the thalamus and hippocampus have also been linked to schizophrenia. We therefore investigated whether common variants of the HLA would affect volumetric variation of the thalamus and hippocampus. We analyzed thalamus and hippocampus volumes, as measured using structural magnetic resonance imaging, in 1.265 healthy participants. These participants had also been genotyped using genome-wide single nucleotide polymorphism (SNP) arrays. We imputed genotypes for single nucleotide polymorphisms at high density across the HLA locus, as well as HLA allotypes and HLA amino acids, by use of a reference population dataset that was specifically targeted to the HLA region. We detected a significant association of the SNP rs17194174 with thalamus volume (nominal P=0.0000017, corrected P=0.0039), as well as additional SNPs within the same region of linkage disequilibrium. This effect was largely lateralized to the left thalamus and is localized within a genomic region previously associated with schizophrenia. The associated SNPs are also clustered within a potential regulatory element, and a region of linkage disequilibrium that spans genes expressed in the thalamus, including HLA-A. Our data indicate that genetic variation within the HLA region influences the volume and asymmetry of the human thalamus. The molecular mechanisms underlying this association may relate to HLA influences on susceptibility to schizophrenia
  • Caldwell-Harris, C. L., Lancaster, A., Ladd, D. R., Dediu, D., & Christiansen, M. H. (2015). Factors influencing sensitivity to lexical tone in an artificial language: Implications for second language learning. Studies in Second Language Acquisition, 37(2), 335-357. doi:10.1017/S0272263114000849.

    Abstract

    This study examined whether musical training, ethnicity, and experience with a natural tone language influenced sensitivity to tone while listening to an artificial tone language. The language was designed with three tones, modeled after level-tone African languages. Participants listened to a 15-min random concatenation of six 3-syllable words. Sensitivity to tone was assessed using minimal pairs differing only in one syllable (nonword task: e.g., to-kà-su compared to ca-fí-to) or only in tone (tone task: e.g., to-kà-su compared to to-ká-su). Proficiency in an East Asian heritage language was the strongest predictor of success on the tone task. Asians without tone language experience were no better than other ethnic groups. We conclude by considering implications for research on second language learning, especially as approached through artificial language learning.
  • Ceroni, F., Simpson, N. H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P. F., Hennessy, E. R., Donnelly, P., Bentley, D. R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A. T., Maestrini, E., Bacchelli, E., Fisher, S. E., & Newbury, D. F. (2015). Reply to Pembrey et al: ‘ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis’. European Journal of Human Genetics, 23, 1113-1115. doi:10.1038/ejhg.2014.275.
  • Chen, J., Calhoun, V. D., Arias-Vasquez, A., Zwiers, M. P., Van Hulzen, K., Fernández, G., Fisher, S. E., Franke, B., Turner, J. A., & Liu, J. (2015). G-Protein genomic association with normal variation in gray matter density. Human Brain Mapping, 36(11), 4272-4286. doi:10.1002/hbm.22916.

    Abstract

    While detecting genetic variations underlying brain structures helps reveal mechanisms of neural disorders, high data dimensionality poses a major challenge for imaging genomic association studies. In this work, we present the application of a recently proposed approach, parallel independent component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray matter variation in a healthy population. This approach simultaneously assesses many variables for an aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism (SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics (BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a significant SNP-GMD association (r = −0.16, P = 2.34 × 10−8), implying that subjects with specific genotypes have lower localized GMD. The identified components were then projected to an independent dataset from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the obtained loadings again yielded a significant SNP-GMD association (r = −0.25, P = 0.02). The imaging component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP component was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance, molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the genetic architecture underlying normal GMD variation in frontal and parietal regions
  • Dediu, D. (2015). An introduction to genetics for language scientists: Current concepts, methods, and findings. Cambridge: Cambridge University Press.
  • Esling, J. H., Benner, A., & Moisik, S. R. (2015). Laryngeal articulatory function and speech origins. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 2-7). Glasgow: ICPhS.

    Abstract

    The larynx is the essential articulatory mechanism that primes the vocal tract. Far from being only a glottal source of voicing, the complex laryngeal mechanism entrains the ontogenetic acquisition of speech and, through coarticulatory coupling, guides the production of oral sounds in the infant vocal tract. As such, it is not possible to speculate as to the origins of the speaking modality in humans without considering the fundamental role played by the laryngeal articulatory mechanism. The Laryngeal Articulator Model, which divides the vocal tract into a laryngeal component and an oral component, serves as a basis for describing early infant speech and for positing how speech sounds evolving in various hominids may be related phonetically. To this end, we offer some suggestions for how the evolution and development of vocal tract anatomy fit with our infant speech acquisition data and discuss the implications this has for explaining phonetic learning and for interpreting the biological evolution of the human vocal tract in relation to speech and speech acquisition.
  • Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1, 289-310. doi:10.1146/annurev-linguist-030514-125024.

    Abstract

    Theories addressing the biological basis of language must be built on
    an appreciation of the ways that molecular and neurobiological substrates
    can contribute to aspects of human cognition. Here, we lay out
    the principles by which a genome could potentially encode the necessary
    information to produce a language-ready brain. We describe
    what genes are; how they are regulated; and how they affect the formation,
    function, and plasticity of neuronal circuits. At each step,
    we give examples of molecules implicated in pathways that are important
    for speech and language. Finally, we discuss technological advances
    in genomics that are revealing considerable genotypic variation in
    the human population, from rare mutations to common polymorphisms,
    with the potential to relate this variation to natural variability
    in speech and language skills. Moving forward, an interdisciplinary
    approach to the language sciences, integrating genetics, neurobiology,
    psychology, and linguistics, will be essential for a complete understanding
    of our unique human capacities.
  • Fisher, S. E. (2015). Translating the genome in human neuroscience. In G. Marcus, & J. Freeman (Eds.), The future of the brain: Essays by the world's leading neuroscientists (pp. 149-159). Princeton, NJ: Princeton University Press.
  • Francks, C. (2015). Exploring human brain lateralization with molecular genetics and genomics. Annals of the New York Academy of Sciences, 1359, 1-13. doi:10.1111/nyas.12770.

    Abstract

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic–developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions.
  • Gascoyne, D. M., Spearman, H., Lyne, L., Puliyadi, R., Perez-Alcantara, M., Coulton, L., Fisher, S. E., Croucher, P. I., & Banham, A. H. (2015). The forkhead transcription factor FOXP2 is required for regulation of p21 WAF1/CIP1 in 143B osteosarcoma cell growth arrest. PLoS One, 10(6): e0128513. doi:10.1371/journal.pone.0128513.

    Abstract

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology
  • Gialluisi, A. (2015). Investigating the genetic basis of reading and language skills. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 370: 20140092. doi:10.1098/rstb.2014.0092.

    Abstract

    Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes.
  • Graham, S. A., Deriziotis, P., & Fisher, S. E. (2015). Insights into the genetic foundations of human communication. Neuropsychology Review, 25(1), 3-26. doi:10.1007/s11065-014-9277-2.

    Abstract

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior
  • Graham, S. A., & Fisher, S. E. (2015). Understanding language from a genomic perspective. Annual Review of Genetics, 49, 131-160. doi:10.1146/annurev-genet-120213-092236.

    Abstract

    Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.

    Files private

    Request files
  • Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., Hagoort, P., Fernandez, G., Buitelaar, J., van Bokhoven, H., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.

    Abstract

    The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.
  • Gupta, C. N., Calhoun, V. D., Rachkonda, S., Chen, J., Patel, V., Liu, J., Segall, J., Franke, B., Zwiers, M. P., Arias-Vasquez, A., Buitelaar, J., Fisher, S. E., Fernández, G., van Erp, T. G. M., Potkin, S., Ford, J., Matalon, D., McEwen, S., Lee, H. J., Mueller, B. A. and 16 moreGupta, C. N., Calhoun, V. D., Rachkonda, S., Chen, J., Patel, V., Liu, J., Segall, J., Franke, B., Zwiers, M. P., Arias-Vasquez, A., Buitelaar, J., Fisher, S. E., Fernández, G., van Erp, T. G. M., Potkin, S., Ford, J., Matalon, D., McEwen, S., Lee, H. J., Mueller, B. A., Greve, D. N., Andreassen, O., Agartz, I., Gollub, R. L., Sponheim, S. R., Ehrlich, S., Wang, L., Pearlson, G., Glahn, D. S., Sprooten, E., Mayer, A. R., Stephen, J., Jung, R. E., Canive, J., Bustillo, J., & Turner, J. A. (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophrenia Bulletin, 41(5), 1133-1142. doi:10.1093/schbul/sbu177.

    Abstract

    Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects.
  • Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., Aribisala, B. S., Armstrong, N. J., Bernard, M., Bohlken, M. M., Boks, M. P., Bralten, J., Brown, A. A., Chakravarty, M. M., Chen, Q., Ching, C. R. K. and 267 moreHibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., Aribisala, B. S., Armstrong, N. J., Bernard, M., Bohlken, M. M., Boks, M. P., Bralten, J., Brown, A. A., Chakravarty, M. M., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., den Braber, A., Giddaluru, S., Goldman, A. L., Grimm, O., Guadalupe, T., Hass, J., Woldehawariat, G., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Kim, S., Klein, M., Kraemer, B., Lee, P. H., Olde Loohuis, L. M., Luciano, M., Macare, C., Mather, K. A., Mattheisen, M., Milaneschi, Y., Nho, K., Papmeyer, M., Ramasamy, A., Risacher, S. L., Roiz-Santiañez, R., Rose, E. J., Salami, A., Sämann, P. G., Schmaal, L., Schork, A. J., Shin, J., Strike, L. T., Teumer, A., Van Donkelaar, M. M. J., Van Eijk, K. R., Walters, R. K., Westlye, L. T., Whelan, C. D., Winkler, A. M., Zwiers, M. P., Alhusaini, S., Athanasiu, L., Ehrlich, S., Hakobjan, M. M. H., Hartberg, C. B., Haukvik, U. K., Heister, A. J. G. A. M., Hoehn, D., Kasperaviciute, D., Liewald, D. C. M., Lopez, L. M., Makkinje, R. R. R., Matarin, M., Naber, M. A. M., McKay, D. R., Needham, M., Nugent, A. C., Pütz, B., Royle, N. A., Shen, L., Sprooten, E., Trabzuni, D., Van der Marel, S. S. L., Van Hulzen, K. J. E., Walton, E., Wolf, C., Almasy, L., Ames, D., Arepalli, S., Assareh, A. A., Bastin, M. E., Brodaty, H., Bulayeva, K. B., Carless, M. A., Cichon, S., Corvin, A., Curran, J. E., Czisch, M., De Zubicaray, G. I., Dillman, A., Duggirala, R., Dyer, T. D., Erk, S., Fedko, I. O., Ferrucci, L., Foroud, T. M., Fox, P. T., Fukunaga, M., Gibbs, J. R., Göring, H. H. H., Green, R. C., Guelfi, S., Hansell, N. K., Hartman, C. A., Hegenscheid, K., Heinz, A., Hernandez, D. G., Heslenfeld, D. J., Hoekstra, P. J., Holsboer, F., Homuth, G., Hottenga, J.-J., Ikeda, M., Jack, C. R., Jenkinson, M., Johnson, R., Kanai, R., Keil, M., Kent, J. W., Kochunov, P., Kwok, J. B., Lawrie, S. M., Liu, X., Longo, D. L., McMahon, K. L., Meisenzahl, E., Melle, I., Mohnke, S., Montgomery, G. W., Mostert, J. C., Mühleisen, T. W., Nalls, M. A., Nichols, T. E., Nilsson, L. G., Nöthen, M. M., Ohi, K., Olvera, R. L., Perez-Iglesias, R., Pike, G. B., Potkin, S. G., Reinvang, I., Reppermund, S., Rietschel, M., Romanczuk-Seiferth, N., Rosen, G. D., Rujescu, D., Schnell, K., Schofield, P. R., Smith, C., Steen, V. M., Sussmann, J. E., Thalamuthu, A., Toga, A. W., Traynor, B. J., Troncoso, J., Turner, J. A., Valdes Hernández, M. C., van Ent, D. ’., Van der Brug, M., Van der Wee, N. J. A., Van Tol, M.-J., Veltman, D. J., Wassink, T. H., Westman, E., Zielke, R. H., Zonderman, A. B., Ashbrook, D. G., Hager, R., Lu, L., McMahon, F. J., Morris, D. W., Williams, R. W., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Cahn, W., Calhoun, V. D., Cavalleri, G. L., Crespo-Facorro, B., Dale, A. M., Davies, G. E., Delanty, N., Depondt, C., Djurovic, S., Drevets, W. C., Espeseth, T., Gollub, R. L., Ho, B.-C., Hoffmann, W., Hosten, N., Kahn, R. S., Le Hellard, S., Meyer-Lindenberg, A., Müller-Myhsok, B., Nauck, M., Nyberg, L., Pandolfo, M., Penninx, B. W. J. H., Roffman, J. L., Sisodiya, S. M., Smoller, J. W., Van Bokhoven, H., Van Haren, N. E. M., Völzke, H., Walter, H., Weiner, M. W., Wen, W., White, T., Agartz, I., Andreassen, O. A., Blangero, J., Boomsma, D. I., Brouwer, R. M., Cannon, D. M., Cookson, M. R., De Geus, E. J. C., Deary, I. J., Donohoe, G., Fernández, G., Fisher, S. E., Francks, C., Glahn, D. C., Grabe, H. J., Gruber, O., Hardy, J., Hashimoto, R., Hulshoff Pol, H. E., Jönsson, E. G., Kloszewska, I., Lovestone, S., Mattay, V. S., Mecocci, P., McDonald, C., McIntosh, A. M., Ophoff, R. A., Paus, T., Pausova, Z., Ryten, M., Sachdev, P. S., Saykin, A. J., Simmons, A., Singleton, A., Soininen, H., Wardlaw, J. M., Weale, M. E., Weinberger, D. R., Adams, H. H. H., Launer, L. J., Seiler, S., Schmidt, R., Chauhan, G., Satizabal, C. L., Becker, J. T., Yanek, L., van der Lee, S. J., Ebling, M., Fischl, B., Longstreth, W. T., Greve, D., Schmidt, H., Nyquist, P., Vinke, L. N., Van Duijn, C. M., Xue, L., Mazoyer, B., Bis, J. C., Gudnason, V., Seshadri, S., Ikram, M. A., The Alzheimer’s Disease Neuroimaging Initiative, The CHARGE Consortium, EPIGEN, IMAGEN, SYS, Martin, N. G., Wright, M. J., Schumann, G., Franke, B., Thompson, P. M., & Medland, S. E. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520, 224-229. doi:10.1038/nature14101.

    Abstract

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10-33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction

    Files private

    Request files
  • Janssen, R., Moisik, S. R., & Dediu, D. (2015). Bézier modelling and high accuracy curve fitting to capture hard palate variation. In Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK: University of Glasgow.

    Abstract

    The human hard palate shows between-subject variation
    that is known to influence articulatory strategies.
    In order to link such variation to human speech, we
    are conducting a cross-sectional MRI study on multiple
    populations. A model based on Bezier curves
    using only three parameters was fitted to hard palate
    MRI tracings using evolutionary computation. The
    fits produced consistently yield high accuracies. For
    future research, this new method may be used to classify
    our MRI data on ethnic origins using e.g., cluster
    analyses. Furthermore, we may integrate our model
    into three-dimensional representations of the vocal
    tract in order to investigate its effect on acoustics and
    cultural transmission.
  • Karlebach, G., & Francks, C. (2015). Lateralization of gene expression in human language cortex. Cortex, 67, 30-36. doi:10.1016/j.cortex.2015.03.003.

    Abstract

    Lateralization is an important aspect of the functional brain architecture for language and other cognitive faculties. The molecular genetic basis of human brain lateralization is unknown, and recent studies have suggested that gene expression in the cerebral cortex is bilaterally symmetrical. Here we have re-analyzed two transcriptomic datasets derived from post mortem human cerebral cortex, with a specific focus on superior temporal and auditory language cortex in adults. We applied an empirical Bayes approach to model differential left-right expression, together with gene ontology analysis and meta-analysis. There was robust and reproducible lateralization of individual genes and gene ontology groups that are likely to fine-tune the electrophysiological and neurotransmission properties of cortical circuits, most notably synaptic transmission, nervous system development and glutamate receptor activity. Our findings anchor the cerebral biology of language to the molecular genetic level. Future research in model systems may determine how these molecular signatures of neurophysiological lateralization effect fine-tuning of cerebral cortical function, differently in the two hemispheres.
  • Klein, M., Van der Vloet, M., Harich, B., Van Hulzen, K. J., Onnink, A. M. H., Hoogman, M., Guadalupe, T., Zwiers, M., Groothuismink, J. M., Verberkt, A., Nijhof, B., Castells-Nobau, A., Faraone, S. V., Buitelaar, J. K., Schenck, A., Arias-Vasquez, A., Franke, B., & Psychiatric Genomics Consortium ADHD Working Group (2015). Converging evidence does not support GIT1 as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168, 492-507. doi:10.1002/ajmg.b.32327.

    Abstract

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N=19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N=225), and (3) the Brain Imaging Genetics cohort (BIG, N=1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences
  • Ladd, D. R., Roberts, S. G., & Dediu, D. (2015). Correlational studies in typological and historical linguistics. Annual Review of Linguistics, 1, 221-241. doi:10.1146/annurev-linguist-030514-124819.

    Abstract

    We review a number of recent studies that have identified either correlations between different linguistic features (e.g., implicational universals) or correlations between linguistic features and nonlinguistic properties of speakers or their environment (e.g., effects of geography on vocabulary). We compare large-scale quantitative studies with more traditional theoretical and historical linguistic research and identify divergent assumptions and methods that have led linguists to be skeptical of correlational work. We also attempt to demystify statistical techniques and point out the importance of informed critiques of the validity of statistical approaches. Finally, we describe various methods used in recent correlational studies to deal with the fact that, because of contact and historical relatedness, individual languages in a sample rarely represent independent data points, and we show how these methods may allow us to explore linguistic prehistory to a greater time depth than is possible with orthodox comparative reconstruction.
  • Lozano, R., Vino, A., Lozano, C., Fisher, S. E., & Deriziotis, P. (2015). A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European Journal of Human Genetics, 23, 1702-1707. doi:10.1038/ejhg.2015.66.

    Abstract

    FOXP1 (forkhead box protein P1) is a transcription factor involved in the development of several tissues, including the brain. An emerging phenotype of patients with protein-disrupting FOXP1 variants includes global developmental delay, intellectual disability and mild to severe speech/language deficits. We report on a female child with a history of severe hypotonia, autism spectrum disorder and mild intellectual disability with severe speech/language impairment. Clinical exome sequencing identified a heterozygous de novo FOXP1 variant c.1267_1268delGT (p.V423Hfs*37). Functional analyses using cellular models show that the variant disrupts multiple aspects of FOXP1 activity, including subcellular localization and transcriptional repression properties. Our findings highlight the importance of performing functional characterization to help uncover the biological significance of variants identified by genomics approaches, thereby providing insight into pathways underlying complex neurodevelopmental disorders. Moreover, our data support the hypothesis that de novo variants represent significant causal factors in severe sporadic disorders and extend the phenotype seen in individuals with FOXP1 haploinsufficiency
  • Moisik, S. R., & Dediu, D. (2015). Anatomical biasing and clicks: Preliminary biomechanical modelling. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 8-13). Glasgow: ICPhS.

    Abstract

    It has been observed by several researchers that the Khoisan palate tends to lack a prominent alveolar ridge. A preliminary biomechanical model of click production was created to examine if these sounds might be subject to an anatomical bias associated with alveolar ridge size. Results suggest the bias is plausible, taking the form of decreased articulatory effort and improved volume change characteristics, however, further modelling and experimental research is required to solidify the claim.
  • Pettigrew, K. A., Fajutrao Valles, S. F., Moll, K., Northstone, K., Ring, S., Pennell, C., Wang, C., Leavett, R., Hayiou-Thomas, M. E., Thompson, P., Simpson, N. H., Fisher, S. E., The SLI Consortium, Whitehouse, A. J., Snowling, M. J., Newbury, D. F., & Paracchini, S. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 14(4), 369-376. doi:10.1111/gbb.12213.

    Abstract

    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance.

    We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible.

    We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities.
  • Rodenas-Cuadrado, P., Chen, X. S., Wiegrebe, L., Firzlaff, U., & Vernes, S. C. (2015). A novel approach identifies the first transcriptome networks in bats: A new genetic model for vocal communication. BMC Genomics, 16: 836. doi:10.1186/s12864-015-2068-1.

    Abstract

    Background Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. Results Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. Conclusion We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.
  • Simpson, N. H., Ceroni, F., Reader, R. H., Covill, L. E., Knight, J. C., the SLI Consortium, Hennessy, E. R., Bolton, P. F., Conti-Ramsden, G., O’Hare, A., Baird, G., Fisher, S. E., & Newbury, D. F. (2015). Genome-wide analysis identifies a role for common copy number variants in specific language impairment. European Journal of Human Genetics, 23, 1370-1377. doi:10.1038/ejhg.2014.296.

    Abstract

    An exploratory genome-wide copy number variant (CNV) study was performed in 127 independent cases with specific language impairment (SLI), their first-degree relatives (385 individuals) and 269 population controls. Language-impaired cases showed an increased CNV burden in terms of the average number of events (11.28 vs 10.01, empirical P=0.003), the total length of CNVs (717 vs 513 Kb, empirical P=0.0001), the average CNV size (63.75 vs 51.6 Kb, empirical P=0.0005) and the number of genes spanned (14.29 vs 10.34, empirical P=0.0007) when compared with population controls, suggesting that CNVs may contribute to SLI risk. A similar trend was observed in first-degree relatives regardless of affection status. The increased burden found in our study was not driven by large or de novo events, which have been described as causative in other neurodevelopmental disorders. Nevertheless, de novo CNVs might be important on a case-by-case basis, as indicated by identification of events affecting relevant genes, such as ACTR2 and CSNK1A1, and small events within known micro-deletion/-duplication syndrome regions, such as chr8p23.1. Pathway analysis of the genes present within the CNVs of the independent cases identified significant overrepresentation of acetylcholine binding, cyclic-nucleotide phosphodiesterase activity and MHC proteins as compared with controls. Taken together, our data suggest that the majority of the risk conferred by CNVs in SLI is via common, inherited events within a ‘common disorder–common variant’ model. Therefore the risk conferred by CNVs will depend upon the combination of events inherited (both CNVs and SNPs), the genetic background of the individual and the environmental factors.

    Additional information

    ejhg2014296x1.pdf ejhg2014296x2.pdf
  • Spaeth, J. M., Hunter, C. S., Bonatakis, L., Guo, M., French, C. A., Slack, I., Hara, M., Fisher, S. E., Ferrer, J., Morrisey, E. E., Stanger, B. Z., & Stein, R. (2015). The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia, 58, 1836-1844. doi:10.1007/s00125-015-3635-3.

    Abstract

    Aims/hypothesis Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. Methods Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. Results Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. Conclusions/interpretation Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.
  • Van Rhijn, J. R., & Vernes, S. C. (2015). Retinoic acid signaling: A new piece in the spoken language puzzle. Frontiers in Psychology, 6: 1816. doi:10.3389/fpsyg.2015.01816.

    Abstract

    Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms that encode these pathways will shed light on how humans can effortlessly and innately use spoken language and could elucidate what goes wrong in speech-language disorders.
    FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that also includes receptive and expressive language impairments. The underlying neuro-molecular mechanisms controlled by FOXP2, which will give insight into our capacity for speech-motor control, are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid signaling and to modify the cellular response to retinoic acid, a key regulator of brain development. Herein we explore the evidence that FOXP2 and retinoic acid signaling function in the same pathways. We present evidence at molecular, cellular and behavioral levels that suggest an interplay between FOXP2 and retinoic acid that may be important for fine motor control and speech-motor output.
    We propose that retinoic acid signaling is an exciting new angle from which to investigate how neurogenetic mechanisms can contribute to the (spoken) language ready brain.
  • Villanueva, P., Nudel, R., Hoischen, A., Fernández, M. A., Simpson, N. H., Gilissen, C., Reader, R. H., Jara, L., Echeverry, M., Francks, C., Baird, G., Conti-Ramsden, G., O’Hare, A., Bolton, P., Hennessy, E. R., the SLI Consortium, Palomino, H., Carvajal-Carmona Veltman J.A., L., Veltman, J. A., Cazier, J.-B. and 3 moreVillanueva, P., Nudel, R., Hoischen, A., Fernández, M. A., Simpson, N. H., Gilissen, C., Reader, R. H., Jara, L., Echeverry, M., Francks, C., Baird, G., Conti-Ramsden, G., O’Hare, A., Bolton, P., Hennessy, E. R., the SLI Consortium, Palomino, H., Carvajal-Carmona Veltman J.A., L., Veltman, J. A., Cazier, J.-B., De Barbieri, Z., Fisher, S. E., & Newbury, D. (2015). Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for Specific Language Impairment. PLoS Genetics, 11(3): e1004925. doi:10.1371/journal.pgen.1004925.
  • Wain, L. V., Shrine, N., Miller, S., Jackson, V. E., Ntalla, I., Artigas, M. S., Billington, C. K., Kheirallah, A. K., Allen, R., Cook, J. P., Probert, K., Obeidat, M., Bossé, Y., Hao, K., Postma, D. S., Paré, P. D., Ramasamy, A., UK Brain Expression Consortium (UKBEC), Mägi, R., Mihailov, E., Reinmaa, E. and 20 moreWain, L. V., Shrine, N., Miller, S., Jackson, V. E., Ntalla, I., Artigas, M. S., Billington, C. K., Kheirallah, A. K., Allen, R., Cook, J. P., Probert, K., Obeidat, M., Bossé, Y., Hao, K., Postma, D. S., Paré, P. D., Ramasamy, A., UK Brain Expression Consortium (UKBEC), Mägi, R., Mihailov, E., Reinmaa, E., Melén, E., O’Connell, J., Frangou, E., Delaneau, O., OxGSK, C., Freeman, C., Petkova, D., McCarthy, M., Sayers, I., Deloukas, P., Hubbard, R., Pavord, I., Hansell, A. L., Thomson, N. C., Zeggini, E., Morris, A. P., Marchini, J., Strachan, D. P., Tobin, M. D., & Hall, I. P. (2015). Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. The Lancet Respiratory Medicine, 3(10), 769-781. doi:10.1016/S2213-2600(15)00283-0.

    Abstract

    Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health.

    Files private

    Request files
  • Warrier, V., Chakrabarti, B., Murphy, L., Chan, A., Craig, I., Mallya, U., Lakatošová, S., Rehnstrom, K., Peltonen, L., Wheelwright, S., Allison, C., Fisher, S. E., & Baron-Cohen, S. (2015). A pooled genome-wide association study of Asperger Syndrome. PLoS One, 10(7): e0131202. doi: 10.1371/journal.pone.0131202.

    Abstract

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.
  • Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5(6), 349-361. doi:10.1089/brain.2013.0199.

    Abstract

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the BA6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2-processing especially for less proficient L2-speakers. This is the first time that a L2-proficiency-dependent laterality shift in structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right, and back to left hemisphere dominance with increasing L2-proficiency. We additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning
  • Zhao, H., Zhou, W., Yao, Z., Wan, Y., Cao, J., Zhang, L., Zhao, J., Li, H., Zhou, R., Li, B., Wei, G., Zhang, Z., French, C. A., Dekker, J. D., Yang, Y., Fisher, S. E., Tucker, H. O., & Guo, X. (2015). Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Developmental Biology, 398, 242-254. doi:10.1016/j.ydbio.2014.12.007.

    Abstract

    Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.

Share this page