Displaying 1 - 50 of 50
  • Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biology, 20(7): e3001713. doi:10.1371/journal.pbio.3001713.

    Abstract

    Human language stands out in the natural world as a biological signal that uses a structured system to combine the meanings of small linguistic units (e.g., words) into larger constituents (e.g., phrases and sentences). However, the physical dynamics of speech (or sign) do not stand in a one-to-one relationship with the meanings listeners perceive. Instead, listeners infer meaning based on their knowledge of the language. The neural readouts of the perceptual and cognitive processes underlying these inferences are still poorly understood. In the present study, we used scalp electroencephalography (EEG) to compare the neural response to phrases (e.g., the red vase) and sentences (e.g., the vase is red), which were close in semantic meaning and had been synthesized to be physically indistinguishable. Differences in structure were well captured in the reorganization of neural phase responses in delta (approximately <2 Hz) and theta bands (approximately 2 to 7 Hz),and in power and power connectivity changes in the alpha band (approximately 7.5 to 13.5 Hz). Consistent with predictions from a computational model, sentences showed more power, more power connectivity, and more phase synchronization than phrases did. Theta–gamma phase–amplitude coupling occurred, but did not differ between the syntactic structures. Spectral–temporal response function (STRF) modeling revealed different encoding states for phrases and sentences, over and above the acoustically driven neural response. Our findings provide a comprehensive description of how the brain encodes and separates linguistic structures in the dynamics of neural responses. They imply that phase synchronization and strength of connectivity are readouts for the constituent structure of language. The results provide a novel basis for future neurophysiological research on linguistic structure representation in the brain, and, together with our simulations, support time-based binding as a mechanism of structure encoding in neural dynamics.
  • Bai, F. (2022). Neural representation of speech segmentation and syntactic structure discrimination. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Bosker, H. R. (2022). Evidence for selective adaptation and recalibration in the perception of lexical stress. Language and Speech, 65(2), 472-490. doi:10.1177/00238309211030307.

    Abstract

    Individuals vary in how they produce speech. This variability affects both the segments (vowels and consonants) and the suprasegmental properties of their speech (prosody). Previous literature has demonstrated that listeners can adapt to variability in how different talkers pronounce the segments of speech. This study shows that listeners can also adapt to variability in how talkers produce lexical stress. Experiment 1 demonstrates a selective adaptation effect in lexical stress perception: repeatedly hearing Dutch trochaic words biased perception of a subsequent lexical stress continuum towards more iamb responses. Experiment 2 demonstrates a recalibration effect in lexical stress perception: when ambiguous suprasegmental cues to lexical stress were disambiguated by lexical orthographic context as signaling a trochaic word in an exposure phase, Dutch participants categorized a subsequent test continuum as more trochee-like. Moreover, the selective adaptation and recalibration effects generalized to novel words, not encountered during exposure. Together, the experiments demonstrate that listeners also flexibly adapt to variability in the suprasegmental properties of speech, thus expanding our understanding of the utility of listener adaptation in speech perception. Moreover, the combined outcomes speak for an architecture of spoken word recognition involving abstract prosodic representations at a prelexical level of analysis.
  • Brehm, L., Cho, P. W., Smolensky, P., & Goldrick, M. A. (2022). PIPS: A parallel planning model of sentence production. Cognitive Science, 46(2): e13079. doi:10.1111/cogs.13079.

    Abstract

    Subject–verb agreement errors are common in sentence production. Many studies have used experimental paradigms targeting the production of subject–verb agreement from a sentence preamble (The key to the cabinets) and eliciting verb errors (… *were shiny). Through reanalysis of previous data (50 experiments; 102,369 observations), we show that this paradigm also results in many errors in preamble repetition, particularly of local noun number (The key to the *cabinet). We explore the mechanisms of both errors in parallelism in producing syntax (PIPS), a model in the Gradient Symbolic Computation framework. PIPS models sentence production using a continuous-state stochastic dynamical system that optimizes grammatical constraints (shaped by previous experience) over vector representations of symbolic structures. At intermediate stages in the computation, grammatical constraints allow multiple competing parses to be partially activated, resulting in stable but transient conjunctive blend states. In the context of the preamble completion task, memory constraints reduce the strength of the target structure, allowing for co-activation of non-target parses where the local noun controls the verb (notional agreement and locally agreeing relative clauses) and non-target parses that include structural constituents with contrasting number specifications (e.g., plural instead of singular local noun). Simulations of the preamble completion task reveal that these partially activated non-target parses, as well the need to balance accurate encoding of lexical and syntactic aspects of the prompt, result in errors. In other words: Because sentence processing is embedded in a processor with finite memory and prior experience with production, interference from non-target production plans causes errors.
  • Brehm, L., & Alday, P. M. (2022). Contrast coding choices in a decade of mixed models. Journal of Memory and Language, 125: 104334. doi:10.1016/j.jml.2022.104334.

    Abstract

    Contrast coding in regression models, including mixed-effect models, changes what the terms in the model mean.
    In particular, it determines whether or not model terms should be interpreted as main effects. This paper
    highlights how opaque descriptions of contrast coding have affected the field of psycholinguistics. We begin with
    a reproducible example in R using simulated data to demonstrate how incorrect conclusions can be made from
    mixed models; this also serves as a primer on contrast coding for statistical novices. We then present an analysis
    of 3384 papers from the field of psycholinguistics that we coded based upon whether a clear description of
    contrast coding was present. This analysis demonstrates that the majority of the psycholinguistic literature does
    not transparently describe contrast coding choices, posing an important challenge to reproducibility and replicability in our field.
  • He, J., Brehm, L., & Zhang, Q. (2022). Dissociation of writing processes: A functional magnetic resonance imaging study on the neural substrates for the handwritten production of Chinese characters. Journal of Cognitive Neuroscience, 34(12), 2320-2340. doi:10.1162/jocn_a_01911.

    Abstract

    Writing is an important way to communicate in everyday life because it can convey information over time and space, but its neural substrates remain poorly known. Although the neural basis of written language production has been investigated in alphabetic scripts, it has rarely been examined in nonalphabetic languages such as Chinese. The present functional magnetic resonance imaging study explored the neural substrates of handwritten word production in Chinese and identified the brain regions sensitive to the psycholinguistic factors of word frequency and syllable frequency. To capture this, we contrasted neural activation in “writing” with “speaking plus drawing” and “watching plus drawing.” Word frequency (high, low) and syllable frequency (high, low) of the picture names were manipulated. Contrasts between the tasks showed that writing Chinese characters was mainly associated with brain activation in the left frontal and parietal cortex, whereas orthographic processing and the motor procedures necessary for handwritten production were also related to activation in the right frontal and parietal cortex as well as right putamen/thalamus. These results demonstrate that writing Chinese characters requires activation in bilateral cortical regions and the right putamen/thalamus. Our results also revealed no brain activation associated with the main effects of word frequency and syllable frequency as well as their interaction, which implies that word frequency and syllable frequency may not affect the writing of Chinese characters on a neural level.
  • Bujok, R., Meyer, A. S., & Bosker, H. R. (2022). Visible lexical stress cues on the face do not influence audiovisual speech perception. In S. Frota, M. Cruz, & M. Vigário (Eds.), Proceedings of Speech Prosody 2022 (pp. 259-263). doi:10.21437/SpeechProsody.2022-53.

    Abstract

    Producing lexical stress leads to visible changes on the face, such as longer duration and greater size of the opening of the mouth. Research suggests that these visual cues alone can inform participants about which syllable carries stress (i.e., lip-reading silent videos). This study aims to determine the influence of visual articulatory cues on lexical stress perception in more naturalistic audiovisual settings. Participants were presented with seven disyllabic, Dutch minimal stress pairs (e.g., VOORnaam [first name] & voorNAAM [respectable]) in audio-only (phonetic lexical stress continua without video), video-only (lip-reading silent videos), and audiovisual trials (e.g., phonetic lexical stress continua with video of talker saying VOORnaam or voorNAAM). Categorization data from video-only trials revealed that participants could distinguish the minimal pairs above chance from seeing the silent videos alone. However, responses in the audiovisual condition did not differ from the audio-only condition. We thus conclude that visual lexical stress information on the face, while clearly perceivable, does not play a major role in audiovisual speech perception. This study demonstrates that clear unimodal effects do not always generalize to more naturalistic multimodal communication, advocating that speech prosody is best considered in multimodal settings.
  • Cao, Y., Oostenveld, R., Alday, P. M., & Piai, V. (2022). Are alpha and beta oscillations spatially dissociated over the cortex in context‐driven spoken‐word production? Psychophysiology, 59(6): e13999. doi:10.1111/psyp.13999.

    Abstract

    Decreases in oscillatory alpha- and beta-band power have been consistently found in spoken-word production. These have been linked to both motor preparation and conceptual-lexical retrieval processes. However, the observed power decreases have a broad frequency range that spans two “classic” (sensorimotor) bands: alpha and beta. It remains unclear whether alpha- and beta-band power decreases contribute independently when a spoken word is planned. Using a re-analysis of existing magnetoencephalography data, we probed whether the effects in alpha and beta bands are spatially distinct. Participants read a sentence that was either constraining or non-constraining toward the final word, which was presented as a picture. In separate blocks participants had to name the picture or score its predictability via button press. Irregular-resampling auto-spectral analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta bands from the background 1-over-f spectrum. The sources of alpha- and beta-band oscillations were localized based on the participants’ individualized peak frequencies. For both tasks, alpha- and beta-power decreases overlapped in left posterior temporal and inferior parietal cortex, regions that have previously been associated with conceptual and lexical processes. The spatial distributions of the alpha and beta power effects were spatially similar in these regions to the extent we could assess it. By contrast, for left frontal regions, the spatial distributions differed between alpha and beta effects. Our results suggest that for conceptual-lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, are distinct from the classical sensorimotor alpha and beta oscillations.
  • Corps, R. E., Brooke, C., & Pickering, M. (2022). Prediction involves two stages: Evidence from visual-world eye-tracking. Journal of Memory and Language, 122: 104298. doi:10.1016/j.jml.2021.104298.

    Abstract

    Comprehenders often predict what they are going to hear. But do they make the best predictions possible? We addressed this question in three visual-world eye-tracking experiments by asking when comprehenders consider perspective. Male and female participants listened to male and female speakers producing sentences (e.g., I would like to wear the nice…) about stereotypically masculine (target: tie; distractor: drill) and feminine (target: dress, distractor: hairdryer) objects. In all three experiments, participants rapidly predicted semantic associates of the verb. But participants also predicted consistently – that is, consistent with their beliefs about what the speaker would ultimately say. They predicted consistently from the speaker’s perspective in Experiment 1, their own perspective in Experiment 2, and the character’s perspective in Experiment 3. This consistent effect occurred later than the associative effect. We conclude that comprehenders consider perspective when predicting, but not from the earliest moments of prediction, consistent with a two-stage account.

    Additional information

    data and analysis scripts
  • Corps, R. E., Knudsen, B., & Meyer, A. S. (2022). Overrated gaps: Inter-speaker gaps provide limited information about the timing of turns in conversation. Cognition, 223: 105037. doi:10.1016/j.cognition.2022.105037.

    Abstract

    Corpus analyses have shown that turn-taking in conversation is much faster than laboratory studies of speech planning would predict. To explain fast turn-taking, Levinson and Torreira (2015) proposed that speakers are highly proactive: They begin to plan a response to their interlocutor's turn as soon as they have understood its gist, and launch this planned response when the turn-end is imminent. Thus, fast turn-taking is possible because speakers use the time while their partner is talking to plan their own utterance. In the present study, we asked how much time upcoming speakers actually have to plan their utterances. Following earlier psycholinguistic work, we used transcripts of spoken conversations in Dutch, German, and English. These transcripts consisted of segments, which are continuous stretches of speech by one speaker. In the psycholinguistic and phonetic literature, such segments have often been used as proxies for turns. We found that in all three corpora, large proportions of the segments comprised of only one or two words, which on our estimate does not give the next speaker enough time to fully plan a response. Further analyses showed that speakers indeed often did not respond to the immediately preceding segment of their partner, but continued an earlier segment of their own. More generally, our findings suggest that speech segments derived from transcribed corpora do not necessarily correspond to turns, and the gaps between speech segments therefore only provide limited information about the planning and timing of turns.
  • Creemers, A., & Embick, D. (2022). The role of semantic transparency in the processing of spoken compound words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(5), 734-751. doi:10.1037/xlm0001132.

    Abstract

    The question of whether lexical decomposition is driven by semantic transparency in the lexical processing of morphologically complex words, such as compounds, remains controversial. Prior research on compound processing has predominantly examined visual processing. Focusing instead on spoken word word recognition, the present study examined the processing of auditorily presented English compounds that were semantically transparent (e.g., farmyard) or partially opaque with an opaque head (e.g., airline) or opaque modifier (e.g., pothole). Three auditory primed lexical decision experiments were run to examine to what extent constituent priming effects are affected by the semantic transparency of a compound and whether semantic transparency affects the processing of heads and modifiers equally. The results showed priming effects for both modifiers and heads regardless of their semantic transparency, indicating that individual constituents are accessed in transparent as well as opaque compounds. In addition, the results showed smaller priming effects for semantically opaque heads compared with matched transparent compounds with the same head. These findings suggest that semantically opaque heads induce an increased processing cost, which may result from the need to suppress the meaning of the head in favor of the meaning of the opaque compound.
  • Creemers, A., & Meyer, A. S. (2022). The processing of ambiguous pronominal reference is sensitive to depth of processing. Glossa Psycholinguistics, 1(1): 3. doi:10.5070/G601166.

    Abstract

    Previous studies on the processing of ambiguous pronominal reference have led to contradictory results: some suggested that ambiguity may hinder processing (Stewart, Holler, & Kidd, 2007), while others showed an ambiguity advantage (Grant, Sloggett, & Dillon, 2020) similar to what has been reported for structural ambiguities. This study provides a conceptual replication of Stewart et al. (2007, Experiment 1), to examine whether the discrepancy in earlier results is caused by the processing depth that participants engage in (cf. Swets, Desmet, Clifton, & Ferreira, 2008). We present the results from a word-by-word self-paced reading experiment with Dutch sentences that contained a personal pronoun in an embedded clause that was either ambiguous or disambiguated through gender features. Depth of processing of the embedded clause was manipulated through offline comprehension questions. The results showed that the difference in reading times for ambiguous versus unambiguous sentences depends on the processing depth: a significant ambiguity penalty was found under deep processing but not under shallow processing. No significant ambiguity advantage was found, regardless of processing depth. This replicates the results in Stewart et al. (2007) using a different methodology and a larger sample size for appropriate statistical power. These findings provide further evidence that ambiguous pronominal reference resolution is a flexible process, such that the way in which ambiguous sentences are processed depends on the depth of processing of the relevant information. Theoretical and methodological implications of these findings are discussed.
  • Embick, D., Creemers, A., & Goodwin Davies, A. J. (2022). Morphology and the mental lexicon: Three questions about decomposition. In A. Papafragou, J. C. Trueswell, & L. R. Gleitman (Eds.), The Oxford Handbook of the Mental Lexicon (pp. 77-97). Oxford: Oxford University Press.

    Abstract

    The most basic question for the study of morphology and the mental lexicon is whether or not words are _decomposed_: informally, this is the question of whether words are represented (and processed) in terms of some kind of smaller units; that is, broken down into constituent parts. Formally, what it means to represent or process a word as decomposed or not turns out to be quite complex. One of the basic lines of division in the field classifies approaches according to whether they decompose all “complex” words (“Full Decomposition”), or none (“Full Listing”), or some but not all, according to some criterion (typical of “Dual-Route” models). However, if we are correct, there are at least three senses in which an approach might be said to be decompositional or not, with the result that ongoing discussions of what appears to be a single large issue might not always be addressing the same distinction. Put slightly differently, there is no single question of decomposition. Instead, there are independent but related questions that define current research. Our goal here is to identify this finer-grained set of questions, as they are the ones that should assume a central place in the study of morphological and lexical representation.
  • Frances, C., Navarra-Barindelli, E., & Martin, C. D. (2022). Speaker accent modulates the effects of orthographic and phonological similarity on auditory processing by learners of English. Frontiers in Psychology, 13. doi:10.3389/fpsyg.2022.892822.

    Abstract

    The cognate effect refers to translation equivalents with similar form between languages—i.e., cognates, such as “band” (English) and “banda” (Spanish)—being processed faster than words with dissimilar forms—such as, “cloud” and “nube.” Substantive literature supports this claim, but is mostly based on orthographic similarity and tested in the visual modality. In a previous study, we found an inhibitory orthographic similarity effect in the auditory modality—i.e., greater orthographic similarity led to slower response times and reduced accuracy. The aim of the present study is to explain this effect. In doing so, we explore the role of the speaker's accent in auditory word recognition and whether native accents lead to a mismatch between the participants' phonological representation and the stimulus. Participants carried out a lexical decision task and a typing task in which they spelled out the word they heard. Words were produced by two speakers: one with a native English accent (Standard American) and the other with a non-native accent matching that of the participants (native Spanish speaker from Spain). We manipulated orthographic and phonological similarity orthogonally and found that accent did have some effect on both response time and accuracy as well as modulating the effects of similarity. Overall, the non-native accent improved performance, but it did not fully explain why high orthographic similarity items show an inhibitory effect in the auditory modality. Theoretical implications and future directions are discussed.
  • Hervais-Adelman, A., Kumar, U., Mishra, R., Tripathi, V., Guleria, A., Singh, J. P., & Huettig, F. (2022). How does literacy affect speech processing? Not by enhancing cortical responses to speech, but by promoting connectivity of acoustic-phonetic and graphomotor cortices. Journal of Neuroscience, 42(47), 8826-8841. doi:10.1523/JNEUROSCI.1125-21.2022.

    Abstract

    Previous research suggests that literacy, specifically learning alphabetic letter-to-phoneme mappings, modifies online speech processing, and enhances brain responses, as indexed by the blood-oxygenation level dependent signal (BOLD), to speech in auditory areas associated with phonological processing (Dehaene et al., 2010). However, alphabets are not the only orthographic systems in use in the world, and hundreds of millions of individuals speak languages that are not written using alphabets. In order to make claims that literacy per se has broad and general consequences for brain responses to speech, one must seek confirmatory evidence from non-alphabetic literacy. To this end, we conducted a longitudinal fMRI study in India probing the effect of literacy in Devanagari, an abugida, on functional connectivity and cerebral responses to speech in 91 variously literate Hindi-speaking male and female human participants. Twenty-two completely illiterate participants underwent six months of reading and writing training. Devanagari literacy increases functional connectivity between acoustic-phonetic and graphomotor brain areas, but we find no evidence that literacy changes brain responses to speech, either in cross-sectional or longitudinal analyses. These findings shows that a dramatic reconfiguration of the neurofunctional substrates of online speech processing may not be a universal result of learning to read, and suggest that the influence of writing on speech processing should also be investigated.
  • Hintz, F., Voeten, C. C., McQueen, J. M., & Meyer, A. S. (2022). Quantifying the relationships between linguistic experience, general cognitive skills and linguistic processing skills. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 2491-2496). Toronto, Canada: Cognitive Science Society.

    Abstract

    Humans differ greatly in their ability to use language. Contemporary psycholinguistic theories assume that individual differences in language skills arise from variability in linguistic experience and in general cognitive skills. While much previous research has tested the involvement of select verbal and non-verbal variables in select domains of linguistic processing, comprehensive characterizations of the relationships among the skills underlying language use are rare. We contribute to such a research program by re-analyzing a publicly available set of data from 112 young adults tested on 35 behavioral tests. The tests assessed nine key constructs reflecting linguistic processing skills, linguistic experience and general cognitive skills. Correlation and hierarchical clustering analyses of the test scores showed that most of the tests assumed to measure the same construct correlated moderately to strongly and largely clustered together. Furthermore, the results suggest important roles of processing speed in comprehension, and of linguistic experience in production.
  • Huettig, F., Audring, J., & Jackendoff, R. (2022). A parallel architecture perspective on pre-activation and prediction in language processing. Cognition, 224: 105050. doi:10.1016/j.cognition.2022.105050.

    Abstract

    A recent trend in psycholinguistic research has been to posit prediction as an essential function of language processing. The present paper develops a linguistic perspective on viewing prediction in terms of pre-activation. We describe what predictions are and how they are produced. Our basic premises are that (a) no prediction can be made without knowledge to support it; and (b) it is therefore necessary to characterize the precise form of that knowledge, as revealed by a suitable theory of linguistic representations. We describe the Parallel Architecture (PA: Jackendoff, 2002; Jackendoff and Audring, 2020), which makes explicit our commitments about linguistic representations, and we develop an account of processing based on these representations. Crucial to our account is that what have been traditionally treated as derivational rules of grammar are formalized by the PA as lexical items, encoded in the same format as words. We then present a theory of prediction in these terms: linguistic input activates lexical items whose beginning (or incipit) corresponds to the input encountered so far; and prediction amounts to pre-activation of the as yet unheard parts of those lexical items (the remainder). Thus the generation of predictions is a natural byproduct of processing linguistic representations. We conclude that the PA perspective on pre-activation provides a plausible account of prediction in language processing that bridges linguistic and psycholinguistic theorizing.
  • Karaminis, T., Hintz, F., & Scharenborg, O. (2022). The presence of background noise extends the competitor space in native and non-native spoken-word recognition: Insights from computational modeling. Cognitive Science, 46(2): e13110. doi:10.1111/cogs.13110.

    Abstract

    Oral communication often takes place in noisy environments, which challenge spoken-word recognition. Previous research has suggested that the presence of background noise extends the number of candidate words competing with the target word for recognition and that this extension affects the time course and accuracy of spoken-word recognition. In this study, we further investigated the temporal dynamics of competition processes in the presence of background noise, and how these vary in listeners with different language proficiency (i.e., native and non-native) using computational modeling. We developed ListenIN (Listen-In-Noise), a neural-network model based on an autoencoder architecture, which learns to map phonological forms onto meanings in two languages and simulates native and non-native spoken-word comprehension. Simulation A established that ListenIN captures the effects of noise on accuracy rates and the number of unique misperception errors of native and non-native listeners in an offline spoken-word identification task (Scharenborg et al., 2018). Simulation B showed that ListenIN captures the effects of noise in online task settings and accounts for looking preferences of native (Hintz & Scharenborg, 2016) and non-native (new data collected for this study) listeners in a visual-world paradigm. We also examined the model’s activation states during online spoken-word recognition. These analyses demonstrated that the presence of background noise increases the number of competitor words which are engaged in phonological competition and that this happens in similar ways intra- and interlinguistically and in native and non-native listening. Taken together, our results support accounts positing a ‘many-additional-competitors scenario’ for the effects of noise on spoken-word recognition.
  • Lee, R., Chambers, C. G., Huettig, F., & Ganea, P. A. (2022). Children’s and adults’ use of fictional discourse and semantic knowledge for prediction in language processing. PLoS One, 17(4): e0267297. doi:10.1371/journal.pone.0267297.

    Abstract

    Using real-time eye-movement measures, we asked how a fantastical discourse context competes with stored representations of real-world events to influence the moment-by-moment interpretation of a story by 7-year-old children and adults. Seven-year-olds were less effective at bypassing stored real-world knowledge during real-time interpretation than adults. Our results suggest that children privilege stored semantic knowledge over situation-specific information presented in a fictional story context. We suggest that 7-year-olds’ canonical semantic and conceptual relations are sufficiently strongly rooted in statistical patterns in language that have consolidated over time that they overwhelm new and unexpected information even when the latter is fantastical and highly salient.

    Additional information

    Data availability
  • Liu, Y., Hintz, F., Liang, J., & Huettig, F. (2022). Prediction in challenging situations: Most bilinguals can predict upcoming semantically-related words in their L1 source language when interpreting. Bilingualism: Language and Cognition, 25(5), 801-815. doi:10.1017/S1366728922000232.

    Abstract

    Prediction is an important part of language processing. An open question is to what extent people predict language in challenging circumstances. Here we tested the limits of prediction by asking bilingual Dutch native speakers to interpret Dutch sentences into their English counterparts. In two visual world experiments, we recorded participants’ eye movements to co-present visual objects while they engaged in interpreting tasks (consecutive and simultaneous interpreting). Most participants showed anticipatory eye movements to semantically-related upcoming target words in their L1 source language during both consecutive and simultaneous interpretation. A quarter of participants during simultaneous interpretation however did not move their eyes, an extremely unusual participant behaviour in visual world studies. Overall, the findings suggest that most people predict in the source language under challenging interpreting situations. Further work is required to understand the causes of the absence of (anticipatory) eye movements during simultaneous interpretation in a substantial subset of individuals.
  • Menks, W. M., Ekerdt, C., Janzen, G., Kidd, E., Lemhöfer, K., Fernández, G., & McQueen, J. M. (2022). Study protocol: A comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning. BMC Psychology, 10: 169. doi:10.1186/s40359-022-00873-x.

    Abstract

    Background

    While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/).
    Methods

    We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1‐weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning.
    Discussion

    This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
  • Montero-Melis, G., Van Paridon, J., Ostarek, M., & Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action words in working memory. Cortex, 150, 108-125. doi:10.1016/j.cortex.2022.02.006.

    Abstract

    Increasing evidence implicates the sensorimotor systems with high-level cognition, but the extent to which these systems play a functional role remains debated. Using an elegant design, Shebani and Pulvermüller (2013) reported that carrying out a demanding rhythmic task with the hands led to selective impairment of working memory for hand-related words (e.g., clap), while carrying out the same task with the feet led to selective memory impairment for foot-related words (e.g., kick). Such a striking double dissociation is acknowledged even by critics to constitute strong evidence for an embodied account of working memory. Here, we report on an attempt at a direct replication of this important finding. We followed a sequential sampling design and stopped data collection at N=77 (more than five times the original sample size), at which point the evidence for the lack of the critical selective interference effect was very strong (BF01 = 91). This finding constitutes strong evidence against a functional contribution of the motor system to keeping action words in working memory. Our finding fits into the larger emerging picture in the field of embodied cognition that sensorimotor simulations are neither required nor automatic in high-level cognitive processes, but that they may play a role depending on the task. Importantly, we urge researchers to engage in transparent, high-powered, and fully pre-registered experiments like the present one to ensure the field advances on a solid basis.
  • Morey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., Cook, S. W. and 25 moreMorey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., Cook, S. W., Davis, J. D., Evers, E., Girard, S., Harter, D., Hartung, F., Herrera, E., Huettig, F., Humphries, S., Juanchich, M., Kühne, K., Lu, S., Lynes, T., Masson, M. E. J., Ostarek, M., Pessers, S., Reglin, R., Steegen, S., Thiessen, E. D., Thomas, L. E., Trott, S., Vandekerckhove, J., Vanpaemel, W., Vlachou, M., Williams, K., & Ziv-Crispel, N. (2022). A pre-registered, multi-lab non-replication of the Action-sentence Compatibility Effect (ACE). Psychonomic Bulletin & Review, 29, 613-626. doi:10.3758/s13423-021-01927-8.

    Abstract

    The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre- registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero.
  • Onnis, L., Lim, A., Cheung, S., & Huettig, F. (2022). Is the mind inherently predicting? Exploring forward and backward looking in language processing. Cognitive Science, 46(10): e13201. doi:10.1111/cogs.13201.

    Abstract

    Prediction is one characteristic of the human mind. But what does it mean to say the mind is a ’prediction machine’ and inherently forward looking as is frequently claimed? In natural languages, many contexts are not easily predictable in a forward fashion. In English for example many frequent verbs do not carry unique meaning on their own, but instead rely on another word or words that follow them to become meaningful. Upon reading take a the processor often cannot easily predict walk as the next word. But the system can ‘look back’ and integrate walk more easily when it follows take a (e.g., as opposed to make|get|have a walk). In the present paper we provide further evidence for the importance of both forward and backward looking in language processing. In two self-paced reading tasks and an eye-tracking reading task, we found evidence that adult English native speakers’ sensitivity to word forward and backward conditional probability significantly explained variance in reading times over and above psycholinguistic predictors of reading latencies. We conclude that both forward and backward-looking (prediction and integration) appear to be important characteristics of language processing. Our results thus suggest that it makes just as much sense to call the mind an ’integration machine’ which is inherently backward looking.

    Additional information

    Open Data and Open Materials
  • Reinisch, E., & Bosker, H. R. (2022). Encoding speech rate in challenging listening conditions: White noise and reverberation. Attention, Perception & Psychophysics, 84, 2303 -2318. doi:10.3758/s13414-022-02554-8.

    Abstract

    Temporal contrasts in speech are perceived relative to the speech rate of the surrounding context. That is, following a fast context
    sentence, listeners interpret a given target sound as longer than following a slow context, and vice versa. This rate effect, often
    referred to as “rate-dependent speech perception,” has been suggested to be the result of a robust, low-level perceptual process,
    typically examined in quiet laboratory settings. However, speech perception often occurs in more challenging listening condi-
    tions. Therefore, we asked whether rate-dependent perception would be (partially) compromised by signal degradation relative to
    a clear listening condition. Specifically, we tested effects of white noise and reverberation, with the latter specifically distorting
    temporal information. We hypothesized that signal degradation would reduce the precision of encoding the speech rate in the
    context and thereby reduce the rate effect relative to a clear context. This prediction was borne out for both types of degradation in
    Experiment 1, where the context sentences but not the subsequent target words were degraded. However, in Experiment 2, which
    compared rate effects when contexts and targets were coherent in terms of signal quality, no reduction of the rate effect was
    found. This suggests that, when confronted with coherently degraded signals, listeners adapt to challenging listening situations,
    eliminating the difference between rate-dependent perception in clear and degraded conditions. Overall, the present study
    contributes towards understanding the consequences of different types of listening environments on the functioning of low-
    level perceptual processes that listeners use during speech perception.

    Additional information

    Data availability
  • Severijnen, G. G. A., Bosker, H. R., & McQueen, J. M. (2022). Acoustic correlates of Dutch lexical stress re-examined: Spectral tilt is not always more reliable than intensity. In S. Frota, M. Cruz, & M. Vigário (Eds.), Proceedings of Speech Prosody 2022 (pp. 278-282). doi:10.21437/SpeechProsody.2022-57.

    Abstract

    The present study examined two acoustic cues in the production
    of lexical stress in Dutch: spectral tilt and overall intensity.
    Sluijter and Van Heuven (1996) reported that spectral tilt is a
    more reliable cue to stress than intensity. However, that study
    included only a small number of talkers (10) and only syllables
    with the vowels /aː/ and /ɔ/.
    The present study re-examined this issue in a larger and
    more variable dataset. We recorded 38 native speakers of Dutch
    (20 females) producing 744 tokens of Dutch segmentally
    overlapping words (e.g., VOORnaam vs. voorNAAM, “first
    name” vs. “respectable”), targeting 10 different vowels, in
    variable sentence contexts. For each syllable, we measured
    overall intensity and spectral tilt following Sluijter and Van
    Heuven (1996).
    Results from Linear Discriminant Analyses showed that,
    for the vowel /aː/ alone, spectral tilt showed an advantage over
    intensity, as evidenced by higher stressed/unstressed syllable
    classification accuracy scores for spectral tilt. However, when
    all vowels were included in the analysis, the advantage
    disappeared.
    These findings confirm that spectral tilt plays a larger role
    in signaling stress in Dutch /aː/ but show that, for a larger
    sample of Dutch vowels, overall intensity and spectral tilt are
    equally important.
  • Strauß, A., Wu, T., McQueen, J. M., Scharenborg, O., & Hintz, F. (2022). The differential roles of lexical and sublexical processing during spoken-word recognition in clear and in noise. Cortex, 151, 70-88. doi:10.1016/j.cortex.2022.02.011.

    Abstract

    Successful spoken-word recognition relies on an interplay between lexical and sublexical processing. Previous research demonstrated that listeners readily shift between more lexically-biased and more sublexically-biased modes of processing in response to the situational context in which language comprehension takes place. Recognizing words in the presence of background noise reduces the perceptual evidence for the speech signal and – compared to the clear – results in greater uncertainty. It has been proposed that, when dealing with greater uncertainty, listeners rely more strongly on sublexical processing. The present study tested this proposal using behavioral and electroencephalography (EEG) measures. We reasoned that such an adjustment would be reflected in changes in the effects of variables predicting recognition performance with loci at lexical and sublexical levels, respectively. We presented native speakers of Dutch with words featuring substantial variability in (1) word frequency (locus at lexical level), (2) phonological neighborhood density (loci at lexical and sublexical levels) and (3) phonotactic probability (locus at sublexical level). Each participant heard each word in noise (presented at one of three signal-to-noise ratios) and in the clear and performed a two-stage lexical decision and transcription task while EEG was recorded. Using linear mixed-effects analyses, we observed behavioral evidence that listeners relied more strongly on sublexical processing when speech quality decreased. Mixed-effects modelling of the EEG signal in the clear condition showed that sublexical effects were reflected in early modulations of ERP components (e.g., within the first 300 ms post word onset). In noise, EEG effects occurred later and involved multiple regions activated in parallel. Taken together, we found evidence – especially in the behavioral data – supporting previous accounts that the presence of background noise induces a stronger reliance on sublexical processing.
  • Wolf, M. C. (2022). Spoken and written word processing: Effects of presentation modality and individual differences in experience to written language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Acheson, D. J., Ganushchak, L. Y., Christoffels, I. K., & Hagoort, P. (2012). Conflict monitoring in speech production: Physiological evidence from bilingual picture naming. Brain and Language, 123, 131 -136. doi:10.1016/j.bandl.2012.08.008.

    Abstract

    Self-monitoring in production is critical to correct performance, and recent accounts suggest that such monitoring may occur via the detection of response conflict. The error-related negativity (ERN) is a response-locked event-related potential (ERP) that is sensitive to response conflict. The present study examines whether response conflict is detected in production by exploring a situation where multiple outputs are activated: the bilingual naming of form-related equivalents (i.e. cognates). ERPs were recorded while German-Dutch bilinguals named pictures in their first and second languages. Although cognates were named faster than non-cognates, response conflict was evident in the form of a larger ERN-like response for cognates and adaptation effects on naming, as the magnitude of cognate facilitation was smaller following the naming of cognates. Given that signals of response conflict are present during correct naming, the present results suggest that such conflict may serve as a reliable signal for monitoring in speech production.
  • Benders, T., Escudero, P., & Sjerps, M. J. (2012). The interrelation between acoustic context effects and available response categories in speech sound categorization. Journal of the Acoustical Society of America, 131, 3079-3087. doi:10.1121/1.3688512.

    Abstract

    In an investigation of contextual influences on sound categorization, 64 Peruvian Spanish listeners categorized vowels on an /i/ to /e/ continuum. First, to measure the influence of the stimulus range (broad acoustic context) and the preceding stimuli (local acoustic context), listeners were presented with different subsets of the Spanish /i/-/e/ continuum in separate blocks. Second, the influence of the number of response categories was measured by presenting half of the participants with /i/ and /e/ as responses, and the other half with /i/, /e/, /a/, /o/, and /u/. The results showed that the perceptual category boundary between /i/ and /e/ shifted depending on the stimulus range and that the formant values of locally preceding items had a contrastive influence. Categorization was less susceptible to broad and local acoustic context effects, however, when listeners were presented with five rather than two response options. Vowel categorization depends not only on the acoustic properties of the target stimulus, but also on its broad and local acoustic context. The influence of such context is in turn affected by the number of internal referents that are available to the listener in a task.
  • Brouwer, S., Mitterer, H., & Huettig, F. (2012). Speech reductions change the dynamics of competition during spoken word recognition. Language and Cognitive Processes, 27(4), 539-571. doi:10.1080/01690965.2011.555268.

    Abstract

    Three eye-tracking experiments investigated how phonological reductions (e.g., ‘‘puter’’ for ‘‘computer’’) modulate phonological competition. Participants listened to sentences extracted from a pontaneous speech corpus and saw four printed words: a target (e.g., ‘‘computer’’), a competitor similar to the canonical form (e.g., ‘‘companion’’), one similar to the reduced form (e.g.,
    ‘‘pupil’’), and an unrelated distractor. In Experiment 1, we presented canonical and reduced forms in a syllabic and in a sentence context. Listeners directed
    their attention to a similar degree to both competitors independent of the
    target’s spoken form. In Experiment 2, we excluded reduced forms and
    presented canonical forms only. In such a listening situation, participants
    showed a clear preference for the ‘‘canonical form’’ competitor. In Experiment 3, we presented canonical forms intermixed with reduced forms in a sentence context and replicated the competition pattern of Experiment 1. These data suggest that listeners penalize acoustic mismatches less strongly when listeningto reduced speech than when listening to fully articulated speech. We conclude
    that flexibility to adjust to speech-intrinsic factors is a key feature of the spoken word recognition system.
  • Brouwer, S., Mitterer, H., & Huettig, F. (2012). Can hearing puter activate pupil? Phonological competition and the processing of reduced spoken words in spontaneous conversations. Quarterly Journal of Experimental Psychology, 65, 2193-2220. doi:10.1080/17470218.2012.693109.

    Abstract

    In listeners' daily communicative exchanges, they most often hear casual speech, in which words are often produced with fewer segments, rather than the careful speech used in most psycholinguistic experiments. Three experiments examined phonological competition during the recognition of reduced forms such as [pjutər] for computer using a target-absent variant of the visual world paradigm. Listeners' eye movements were tracked upon hearing canonical and reduced forms as they looked at displays of four printed words. One of the words was phonologically similar to the canonical pronunciation of the target word, one word was similar to the reduced pronunciation, and two words served as unrelated distractors. When spoken targets were presented in isolation (Experiment 1) and in sentential contexts (Experiment 2), competition was modulated as a function of the target word form. When reduced targets were presented in sentential contexts, listeners were probabilistically more likely to first fixate reduced-form competitors before shifting their eye gaze to canonical-form competitors. Experiment 3, in which the original /p/ from [pjutər] was replaced with a “real” onset /p/, showed an effect of cross-splicing in the late time window. We conjecture that these results fit best with the notion that speech reductions initially activate competitors that are similar to the phonological surface form of the reduction, but that listeners nevertheless can exploit fine phonetic detail to reconstruct strongly reduced forms to their canonical counterparts.
  • Ganushchak, L. Y., Krott, A., & Meyer, A. S. (2012). From gr8 to great: Lexical access to SMS shortcuts. Frontiers in Psychology, 3, 150. doi:10.3389/fpsyg.2012.00150.

    Abstract

    Many contemporary texts include shortcuts, such as cu or phones4u. The aim of this study was to investigate how the meanings of shortcuts are retrieved. A primed lexical decision paradigm was used with shortcuts and the corresponding words as primes. The target word was associatively related to the meaning of the whole prime (cu/see you – goodbye), to a component of the prime (cu/see you – look), or unrelated to the prime. In Experiment 1, primes were presented for 57 ms. For both word and shortcut primes, responses were faster to targets preceded by whole-related than by unrelated primes. No priming from component-related primes was found. In Experiment 2, the prime duration was 1000 ms. The priming effect seen in Experiment 1 was replicated. Additionally, there was priming from component-related word primes, but not from component-related shortcut primes. These results indicate that the meanings of shortcuts can be retrieved without translating them first into corresponding words.
  • Haderlein, T., Moers, C., Möbius, B., & Nöth, E. (2012). Automatic rating of hoarseness by text-based cepstral and prosodic evaluation. In P. Sojka, A. Horák, I. Kopecek, & K. Pala (Eds.), Proceedings of the 15th International Conference on Text, Speech and Dialogue (TSD 2012) (pp. 573-580). Heidelberg: Springer.

    Abstract

    The standard for the analysis of distorted voices is perceptual rating of read-out texts or spontaneous speech. Automatic voice evaluation, however, is usually done on stable sections of sustained vowels. In this paper, text-based and established vowel-based analysis are compared with respect to their ability to measure hoarseness and its subclasses. 73 hoarse patients (48.3±16.8 years) uttered the vowel /e/ and read the German version of the text “The North Wind and the Sun”. Five speech therapists and physicians rated roughness, breathiness, and hoarseness according to the German RBH evaluation scheme. The best human-machine correlations were obtained for measures based on the Cepstral Peak Prominence (CPP; up to |r | = 0.73). Support Vector Regression (SVR) on CPP-based measures and prosodic features improved the results further to r ≈0.8 and confirmed that automatic voice evaluation should be performed on a text recording.
  • Hanulikova, A., Dediu, D., Fang, Z., Basnakova, J., & Huettig, F. (2012). Individual differences in the acquisition of a complex L2 phonology: A training study. Language Learning, 62(Supplement S2), 79-109. doi:10.1111/j.1467-9922.2012.00707.x.

    Abstract

    Many learners of a foreign language (L2) struggle to correctly pronounce newly-learned speech sounds, yet many others achieve this with apparent ease. Here we explored how a training study of learning complex consonant clusters at the very onset of the L2 acquisition can inform us about L2 learning in general and individual differences in particular. To this end, adult Dutch native speakers were trained on Slovak words with complex consonant clusters (e.g., pstruh /pstrux/‘trout’, štvrť /ʃtvrc/ ‘quarter’) using auditory and orthographic input. In the same session following training, participants were tested on a battery of L2 perception and production tasks. The battery of L2 tests was repeated twice more with one week between each session. In the first session, an additional battery of control tests was used to test participants’ native language (L1) skills. Overall, in line with some previous research, participants showed only weak learning effects across the L2 perception tasks. However, there were considerable individual differences across all L2 tasks, which remained stable across sessions. Only two participants showed overall high L2 production performance that fell within 2 standard deviations of the mean ratings obtained for an L1 speaker. The mispronunciation detection task was the only perception task which significantly predicted production performance in the final session. We conclude by discussing several recommendations for future L2 learning studies.
  • Huettig, F., Mishra, R. K., & Olivers, C. N. (2012). Mechanisms and representations of language-mediated visual attention. Frontiers in Psychology, 2, 394. doi:10.3389/fpsyg.2011.00394.

    Abstract

    The experimental investigation of language-mediated visual attention is a promising way to study the interaction of the cognitive systems involved in language, vision, attention, and memory. Here we highlight four challenges for a mechanistic account of this oculomotor behavior: the levels of representation at which language-derived and vision-derived representations are integrated; attentional mechanisms; types of memory; and the degree of individual and group differences. Central points in our discussion are (a) the possibility that local microcircuitries involving feedforward and feedback loops instantiate a common representational substrate of linguistic and non-linguistic information and attention; and (b) that an explicit working memory may be central to explaining interactions between language and visual attention. We conclude that a synthesis of further experimental evidence from a variety of fields of inquiry and the testing of distinct, non-student, participant populations will prove to be critical.
  • Janse, E. (2012). A non-auditory measure of interference predicts distraction by competing speech in older adults. Aging, Neuropsychology and Cognition, 19, 741-758. doi:10.1080/13825585.2011.652590.

    Abstract

    In this study, older adults monitored for pre-assigned target sounds in a target talker's speech in a quiet (no noise) condition and in a condition with competing-talker noise. The question was to which extent the impact of the competing-talker noise on performance could be predicted from individual hearing loss and from a cognitive measure of inhibitory abilities, i.e., a measure of Stroop interference. The results showed that the non-auditory measure of Stroop interference predicted the impact of distraction on performance, over and above the effect of hearing loss. This suggests that individual differences in inhibitory abilities among older adults relate to susceptibility to distracting speech.
  • Janse, E., & Adank, P. (2012). Predicting foreign-accent adaptation in older adults. Quarterly Journal of Experimental Psychology, 65, 1563-1585. doi:10.1080/17470218.2012.658822.

    Abstract

    We investigated comprehension of and adaptation to speech in an unfamiliar accent in older adults. Participants performed a speeded sentence verification task for accented sentences: one group upon auditory-only presentation, and the other group upon audiovisual presentation. Our questions were whether audiovisual presentation would facilitate adaptation to the novel accent, and which cognitive and linguistic measures would predict adaptation. Participants were therefore tested on a range of background tests: hearing acuity, auditory verbal short-term memory, working memory, attention-switching control, selective attention, and vocabulary knowledge. Both auditory-only and audiovisual groups showed improved accuracy and decreasing response times over the course of the experiment, effectively showing accent adaptation. Even though the total amount of improvement was similar for the auditory-only and audiovisual groups, initial rate of adaptation was faster in the audiovisual group. Hearing sensitivity and short-term and working memory measures were associated with efficient processing of the novel accent. Analysis of the relationship between accent comprehension and the background tests revealed furthermore that selective attention and vocabulary size predicted the amount of adaptation over the course of the experiment. These results suggest that vocabulary knowledge and attentional abilities facilitate the attention-shifting strategies proposed to be required for perceptual learning.
  • Jesse, A., & Janse, E. (2012). Audiovisual benefit for recognition of speech presented with single-talker noise in older listeners. Language and Cognitive Processes, 27(7/8), 1167-1191. doi:10.1080/01690965.2011.620335.

    Abstract

    Older listeners are more affected than younger listeners in their recognition of speech in adverse conditions, such as when they also hear a single-competing speaker. In the present study, we investigated with a speeded response task whether older listeners with various degrees of hearing loss benefit under such conditions from also seeing the speaker they intend to listen to. We also tested, at the same time, whether older adults need postperceptual processing to obtain an audiovisual benefit. When tested in a phoneme-monitoring task with single-talker noise present, older (and younger) listeners detected target phonemes more reliably and more rapidly in meaningful sentences uttered by the target speaker when they also saw the target speaker. This suggests that older adults processed audiovisual speech rapidly and efficiently enough to benefit already during spoken sentence processing. Audiovisual benefits for older adults were similar in size to those observed for younger adults in terms of response latencies, but smaller for detection accuracy. Older adults with more hearing loss showed larger audiovisual benefits. Attentional abilities predicted the size of audiovisual response time benefits in both age groups. Audiovisual benefits were found in both age groups when monitoring for the visually highly distinct phoneme /p/ and when monitoring for the visually less distinct phoneme /k/. Visual speech thus provides segmental information about the target phoneme, but also provides more global contextual information that helps both older and younger adults in this adverse listening situation.
  • Konopka, A. E. (2012). Planning ahead: How recent experience with structures and words changes the scope of linguistic planning. Journal of Memory and Language, 66, 143-162. doi:10.1016/j.jml.2011.08.003.

    Abstract

    The scope of linguistic planning, i.e., the amount of linguistic information that speakers prepare in advance for an utterance they are about to produce, is highly variable. Distinguishing between possible sources of this variability provides a way to discriminate between production accounts that assume structurally incremental and lexically incremental sentence planning. Two picture-naming experiments evaluated changes in speakers’ planning scope as a function of experience with message structure, sentence structure, and lexical items. On target trials participants produced sentences beginning with two semantically related or unrelated objects in the same complex noun phrase. To manipulate familiarity with sentence structure, target displays were preceded by prime displays that elicited the same or different sentence structures. To manipulate ease of lexical retrieval, target sentences began either with the higher-frequency or lower-frequency member of each semantic pair. The results show that repetition of sentence structure can extend speakers’ scope of planning from one to two words in a complex noun phrase, as indexed by the presence of semantic interference in structurally primed sentences beginning with easily retrievable words. Changes in planning scope tied to experience with phrasal structures favor production accounts assuming structural planning in early sentence formulation.
  • Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794-R795. doi:10.1016/j.cub.2012.07.006.

    Abstract

    The human cerebellum plays an important role in language, amongst other cognitive and motor functions [1], but a unifying theoretical framework about cerebellar language function is lacking. In an established model of motor control, the cerebellum is seen as a predictive machine, making short-term estimations about the outcome of motor commands. This allows for flexible control, on-line correction, and coordination of movements [2]. The homogeneous cytoarchitecture of the cerebellar cortex suggests that similar computations occur throughout the structure, operating on different input signals and with different output targets [3]. Several authors have therefore argued that this ‘motor’ model may extend to cerebellar nonmotor functions [3], [4] and [5], and that the cerebellum may support prediction in language processing [6]. However, this hypothesis has never been directly tested. Here, we used the ‘Visual World’ paradigm [7], where on-line processing of spoken sentence content can be assessed by recording the latencies of listeners' eye movements towards objects mentioned. Repetitive transcranial magnetic stimulation (rTMS) was used to disrupt function in the right cerebellum, a region implicated in language [8]. After cerebellar rTMS, listeners showed delayed eye fixations to target objects predicted by sentence content, while there was no effect on eye fixations in sentences without predictable content. The prediction deficit was absent in two control groups. Our findings support the hypothesis that computational operations performed by the cerebellum may support prediction during both motor control and language processing.

    Additional information

    Lesage_Suppl_Information.pdf
  • Mani, N., & Huettig, F. (2012). Prediction during language processing is a piece of cake - but only for skilled producers. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 843-847. doi:10.1037/a0029284.

    Abstract

    Are there individual differences in children’s prediction of upcoming linguistic input and what do these differences reflect? Using a variant of the preferential looking paradigm (Golinkoff et al., 1987), we found that, upon hearing a sentence like “The boy eats a big cake”, two-year-olds fixate edible objects in a visual scene (a cake) soon after they hear the semantically constraining verb, eats, and prior to hearing the word, cake. Importantly, children’s prediction skills were significantly correlated with their productive vocabulary size – Skilled producers (i.e., children with large production vocabularies) showed evidence of predicting upcoming linguistic input while low producers did not. Furthermore, we found that children’s prediction ability is tied specifically to their production skills and not to their comprehension skills. Prediction is really a piece of cake, but only for skilled producers.
  • McQueen, J. M., & Huettig, F. (2012). Changing only the probability that spoken words will be distorted changes how they are recognized. Journal of the Acoustical Society of America, 131(1), 509-517. doi:10.1121/1.3664087.

    Abstract

    An eye-tracking experiment examined contextual flexibility in speech processing in response to distortions in spoken input. Dutch participants heard Dutch sentences containing critical words and saw four-picture displays. The name of one picture either had the same onset phonemes as the critical word or had a different first phoneme and rhymed. Participants fixated onset-overlap more than rhyme-overlap pictures, but this tendency varied with speech quality. Relative to a baseline with noise-free sentences, participants looked less at onset-overlap and more at rhyme-overlap pictures when phonemes in the sentences (but not in the critical words) were replaced by noises like those heard on a badly-tuned AM radio. The position of the noises (word-initial or word-medial) had no effect. Noises elsewhere in the sentences apparently made evidence about the critical word less reliable: Listeners became less confident of having heard the onset-overlap name but also less sure of having not heard the rhyme-overlap name. The same acoustic information has different effects on spoken-word recognition as the probability of distortion changes.
  • Meyer, A. S., Wheeldon, L. R., Van der Meulen, F., & Konopka, A. E. (2012). Effects of speech rate and practice on the allocation of visual attention in multiple object naming. Frontiers in Psychology, 3, 39. doi:10.3389/fpsyg.2012.00039.

    Abstract

    Earlier studies had shown that speakers naming several objects typically look at each object until they have retrieved the phonological form of its name and therefore look longer at objects with long names than at objects with shorter names. We examined whether this tight eye-to-speech coordination was maintained at different speech rates and after increasing amounts of practice. Participants named the same set of objects with monosyllabic or disyllabic names on up to 20 successive trials. In Experiment 1, they spoke as fast as they could, whereas in Experiment 2 they had to maintain a fixed moderate or faster speech rate. In both experiments, the durations of the gazes to the objects decreased with increasing speech rate, indicating that at higher speech rates, the speakers spent less time planning the object names. The eye-speech lag (the time interval between the shift of gaze away from an object and the onset of its name) was independent of the speech rate but became shorter with increasing practice. Consistent word length effects on the durations of the gazes to the objects and the eye speech lags were only found in Experiment 2. The results indicate that shifts of eye gaze are often linked to the completion of phonological encoding, but that speakers can deviate from this default coordination of eye gaze and speech, for instance when the descriptive task is easy and they aim to speak fast.
  • Mishra, R. K., Singh, N., Pandey, A., & Huettig, F. (2012). Spoken language-mediated anticipatory eye movements are modulated by reading ability: Evidence from Indian low and high literates. Journal of Eye Movement Research, 5(1): 3, pp. 1-10. doi:10.16910/jemr.5.1.3.

    Abstract

    We investigated whether levels of reading ability attained through formal literacy are related to anticipatory language-mediated eye movements. Indian low and high literates listened to simple spoken sentences containing a target word (e.g., "door") while at the same time looking at a visual display of four objects (a target, i.e. the door, and three distractors). The spoken sentences were constructed in such a way that participants could use semantic, associative, and syntactic information from adjectives and particles (preceding the critical noun) to anticipate the visual target objects. High literates started to shift their eye gaze to the target objects well before target word onset. In the low literacy group this shift of eye gaze occurred only when the target noun (i.e. "door") was heard, more than a second later. Our findings suggest that formal literacy may be important for the fine-tuning of language-mediated anticipatory mechanisms, abilities which proficient language users can then exploit for other cognitive activities such as spoken language-mediated eye
    gaze. In the conclusion, we discuss three potential mechanisms of how reading acquisition and practice may contribute to the differences in predictive spoken language processing between low and high literates.
  • Roberts, L., & Meyer, A. S. (Eds.). (2012). Individual differences in second language acquisition [Special Issue]. Language Learning, 62(Supplement S2).
  • Roberts, L., & Meyer, A. S. (2012). Individual differences in second language learning: Introduction. Language Learning, 62(Supplement S2), 1-4. doi:10.1111/j.1467-9922.2012.00703.x.

    Abstract

    First paragraph: The topic of the workshop from which this volume comes, “Individual Differences in Second Language Learning,” is timely and important for both practical and theoretical reasons. The practical reasons are obvious: While many people have some knowledge of a second or further language, there is enormous variability in how well they know these languages. Much of this variability is, of course, likely to be due to differences in the time spent studying or being immersed in the language, but even in similar learning environments learners differ greatly in how quickly they pick up a language and in their ultimate level of proficiency.
  • Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65, 1927-1944. doi:10.1080/17470218.2012.670252.

    Abstract

    We examined the contribution of executive control to individual differences in response time (RT) for naming objects and actions. Following Miyake, Friedman, Emerson, Witzki, Howerter, and Wager (2000), executive control was assumed to include updating, shifting, and inhibiting abilities, which were assessed using operation-span, task switching, and stop-signal tasks, respectively. Study 1 showed that updating ability was significantly correlated with the mean RT of action naming, but not of object naming. This finding was replicated in Study 2 using a larger stimulus set. Inhibiting ability was significantly correlated with the mean RT of both action and object naming, whereas shifting ability was not correlated with the mean naming RTs. Ex-Gaussian analyses of the RT distributions revealed that updating ability was correlated with the distribution tail of both action and object naming, whereas inhibiting ability was correlated with the leading edge of the distribution for action naming and the tail for object naming. Shifting ability provided no independent contribution. These results indicate that the executive control abilities of updating and inhibiting contribute to the speed of naming objects and actions, although there are differences in the way and extent these abilities are involved.
  • Sjerps, M. J., Mitterer, H., & McQueen, J. M. (2012). Hemispheric differences in the effects of context on vowel perception. Brain and Language, 120, 401-405. doi:10.1016/j.bandl.2011.12.012.

    Abstract

    Listeners perceive speech sounds relative to context. Contextual influences might differ over hemispheres if different types of auditory processing are lateralized. Hemispheric differences in contextual influences on vowel perception were investigated by presenting speech targets and both speech and non-speech contexts to listeners’ right or left ears (contexts and targets either to the same or to opposite ears). Listeners performed a discrimination task. Vowel perception was influenced by acoustic properties of the context signals. The strength of this influence depended on laterality of target presentation, and on the speech/non-speech status of the context signal. We conclude that contrastive contextual influences on vowel perception are stronger when targets are processed predominately by the right hemisphere. In the left hemisphere, contrastive effects are smaller and largely restricted to speech contexts.
  • Sjerps, M. J., McQueen, J. M., & Mitterer, H. (2012). Extrinsic normalization for vocal tracts depends on the signal, not on attention. In Proceedings of INTERSPEECH 2012: 13th Annual Conference of the International Speech Communication Association (pp. 394-397).

    Abstract

    When perceiving vowels, listeners adjust to speaker-specific vocal-tract characteristics (such as F1) through "extrinsic vowel normalization". This effect is observed as a shift in the location of categorization boundaries of vowel continua. Similar effects have been found with non-speech. Non-speech materials, however, have consistently led to smaller effect-sizes, perhaps because of a lack of attention to non-speech. The present study investigated this possibility. Non-speech materials that had previously been shown to elicit reduced normalization effects were tested again, with the addition of an attention manipulation. The results show that increased attention does not lead to increased normalization effects, suggesting that vowel normalization is mainly determined by bottom-up signal characteristics.

Share this page