Displaying 1 - 11 of 11
-
Coopmans, C. W., De Hoop, H., Tezcan, F., Hagoort, P., & Martin, A. E. (2025). Language-specific neural dynamics extend syntax into the time domain. PLOS Biology, 23: e3002968. doi:10.1371/journal.pbio.3002968.
Abstract
Studies of perception have long shown that the brain adds information to its sensory analysis of the physical environment. A touchstone example for humans is language use: to comprehend a physical signal like speech, the brain must add linguistic knowledge, including syntax. Yet, syntactic rules and representations are widely assumed to be atemporal (i.e., abstract and not bound by time), so they must be translated into time-varying signals for speech comprehension and production. Here, we test 3 different models of the temporal spell-out of syntactic structure against brain activity of people listening to Dutch stories: an integratory bottom-up parser, a predictive top-down parser, and a mildly predictive left-corner parser. These models build exactly the same structure but differ in when syntactic information is added by the brain—this difference is captured in the (temporal distribution of the) complexity metric “incremental node count.” Using temporal response function models with both acoustic and information-theoretic control predictors, node counts were regressed against source-reconstructed delta-band activity acquired with magnetoencephalography. Neural dynamics in left frontal and temporal regions most strongly reflect node counts derived by the top-down method, which postulates syntax early in time, suggesting that predictive structure building is an important component of Dutch sentence comprehension. The absence of strong effects of the left-corner model further suggests that its mildly predictive strategy does not represent Dutch language comprehension well, in contrast to what has been found for English. Understanding when the brain projects its knowledge of syntax onto speech, and whether this is done in language-specific ways, will inform and constrain the development of mechanistic models of syntactic structure building in the brain. -
Ferrari, A., & Hagoort, P. (2025). Beat gestures and prosodic prominence interactively influence language comprehension. Cognition, 256: 106049. doi:10.1016/j.cognition.2024.106049.
Abstract
Face-to-face communication is not only about ‘what’ is said but also ‘how’ it is said, both in speech and bodily signals. Beat gestures are rhythmic hand movements that typically accompany prosodic prominence in con-versation. Yet, it is still unclear how beat gestures influence language comprehension. On the one hand, beat gestures may share the same functional role of focus markers as prosodic prominence. Accordingly, they would drive attention towards the concurrent speech and highlight its content. On the other hand, beat gestures may trigger inferences of high speaker confidence, generate the expectation that the sentence content is correct and thereby elicit the commitment to the truth of the statement. This study directly disentangled the two hypotheses by evaluating additive and interactive effects of prosodic prominence and beat gestures on language comprehension. Participants watched videos of a speaker uttering sentences and judged whether each sentence was true or false. Sentences sometimes contained a world knowledge violation that may go unnoticed (‘semantic illusion’). Combining beat gestures with prosodic prominence led to a higher degree of semantic illusion, making more world knowledge violations go unnoticed during language comprehension. These results challenge current theories proposing that beat gestures are visual focus markers. To the contrary, they suggest that beat gestures automatically trigger inferences of high speaker confidence and thereby elicit the commitment to the truth of the statement, in line with Grice’s cooperative principle in conversation. More broadly, our findings also highlight the influence of metacognition on language comprehension in face-to-face ommunication. -
Mishra, C., Skantze, G., Hagoort, P., & Verdonschot, R. G. (2025). Perception of emotions in human and robot faces: Is the eye region enough? In O. Palinko, L. Bodenhagen, J.-J. Cabihihan, K. Fischer, S. Šabanović, K. Winkle, L. Behera, S. S. Ge, D. Chrysostomou, W. Jiang, & H. He (
Eds. ), Social Robotics: 116th International Conference, ICSR + AI 2024, Odense, Denmark, October 23–26, 2024, Proceedings (pp. 290-303). Singapore: Springer.Abstract
The increased interest in developing next-gen social robots has raised questions about the factors affecting the perception of robot emotions. This study investigates the impact of robot appearances (human-like, mechanical) and face regions (full-face, eye-region) on human perception of robot emotions. A between-subjects user study (N = 305) was conducted where participants were asked to identify the emotions being displayed in videos of robot faces, as well as a human baseline. Our findings reveal three important insights for effective social robot face design in Human-Robot Interaction (HRI): Firstly, robots equipped with a back-projected, fully animated face – regardless of whether they are more human-like or more mechanical-looking – demonstrate a capacity for emotional expression comparable to that of humans. Secondly, the recognition accuracy of emotional expressions in both humans and robots declines when only the eye region is visible. Lastly, within the constraint of only the eye region being visible, robots with more human-like features significantly enhance emotion recognition. -
Slivac, K., Hagoort, P., & Flecken, M. (2025). Cognitive and neural mechanisms of linguistic influence on perception. Psychological Review. Advance online publication. doi:10.1037/rev0000546.
Abstract
To date, research has reliably shown that language can engage and modify perceptual processes in a top-down manner. However, our understanding of the cognitive and neural mechanisms underlying such top-down influences is still under debate. In this review, we provide an overview of findings from literature investigating the organization of semantic networks in the brain (spontaneous engagement of the visual system while processing linguistic information), and linguistic cueing studies (looking at the immediate effects of language on the perception of a visual target), in an effort to isolate such mechanisms. Additionally, we connect the findings from linguistic cueing studies to those reported in (nonlinguistic) literature on priors in perception, in order to find commonalities in neural processes allowing for top-down influences on perception. In doing so, we discuss the effects of language on perception in the context of broader, general cognitive and neural principles. Finally, we propose a way forward in the study of linguistic influences on perception. -
Zora, H., Kabak, B., & Hagoort, P. (2025). Relevance of prosodic focus and lexical stress for discourse comprehension in Turkish: Evidence from psychometric and electrophysiological data. Journal of Cognitive Neuroscience, 37(3), 693-736. doi:10.1162/jocn_a_02262.
Abstract
Prosody underpins various linguistic domains ranging from semantics and syntax to discourse. For instance, prosodic information in the form of lexical stress modifies meanings and, as such, syntactic contexts of words as in Turkish kaz-má "pickaxe" (noun) versus káz-ma "do not dig" (imperative). Likewise, prosody indicates the focused constituent of an utterance as the noun phrase filling the wh-spot in a dialogue like What did you eat? I ate----. In the present study, we investigated the relevance of such prosodic variations for discourse comprehension in Turkish. We aimed at answering how lexical stress and prosodic focus mismatches on critical noun phrases-resulting in grammatical anomalies involving both semantics and syntax and discourse-level anomalies, respectively-affect the perceived correctness of an answer to a question in a given context. To that end, 80 native speakers of Turkish, 40 participating in a psychometric experiment and 40 participating in an EEG experiment, were asked to judge the acceptability of prosodic mismatches that occur either separately or concurrently. Psychometric results indicated that lexical stress mismatch led to a lower correctness score than prosodic focus mismatch, and combined mismatch received the lowest score. Consistent with the psychometric data, EEG results revealed an N400 effect to combined mismatch, and this effect was followed by a P600 response to lexical stress mismatch. Conjointly, these results suggest that every source of prosodic information is immediately available and codetermines the interpretation of an utterance; however, semantically and syntactically relevant lexical stress information is assigned more significance by the language comprehension system compared with prosodic focus information. -
Bastiaansen, M. C. M., Van Berkum, J. J. A., & Hagoort, P. (2002). Syntactic processing modulates the θ rhythm of the human EEG. NeuroImage, 17, 1479-1492. doi:10.1006/nimg.2002.1275.
Abstract
Changes in oscillatory brain dynamics can be studied by means of induced band power (IBP) analyses, which quantify event-related changes in amplitude of frequency-specific EEG rhythms. Such analyses capture EEG phenomena that are not part of traditional event-related potential measures. The present study investigated whether IBP changes in the δ, θ, and α frequency ranges are sensitive to syntactic violations in sentences. Subjects read sentences that either were correct or contained a syntactic violation. The violations were either grammatical gender agreement violations, where a prenominal adjective was not appropriately inflected for the head noun's gender, or number agreement violations, in which a plural quantifier was combined with a singular head noun. IBP changes of the concurrently measured EEG were computed in five frequency bands of 2-Hz width, individually adjusted on the basis of subjects' α peak, ranging approximately from 2 to 12 Hz. Words constituting a syntactic violation elicited larger increases in θ power than the same words in a correct sentence context, in an interval of 300–500 ms after word onset. Of all the frequency bands studied, this was true for the θ frequency band only. The scalp topography of this effect was different for different violations: following number violations a left-hemispheric dominance was found, whereas gender violations elicited a right-hemisphere dominance of the θ power increase. Possible interpretations of this effect are considered in closing. -
Bastiaansen, M. C. M., Van Berkum, J. J. A., & Hagoort, P. (2002). Event-related theta power increases in the human EEG during online sentence processing. Neuroscience Letters, 323(1), 13-16. doi:10.1016/S0304-3940(01)02535-6.
Abstract
By analyzing event-related changes in induced band power in narrow frequency bands of the human electroencephalograph, the present paper explores a possible functional role of the alpha and theta rhythms during the processing of words and of sentences. The results show a phasic power increase in the theta frequency range, together with a phasic power decrease in the alpha frequency range, following the presentation of words in a sentence. These effects may be related to word processing, either lexical or in relation to sentence context. Most importantly, there is a slow and highly frequency-specific increase in theta power as a sentence unfolds, possibly related to the formation of an episodic memory trace, or to incremental verbal working memory load. -
Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (
Eds. ), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant. -
Hagoort, P. (2002). De koninklijke verloving tussen psychologie en neurowetenschap. De Psycholoog, 37, 107-113.
-
Roelofs, A., & Hagoort, P. (2002). Control of language use: Cognitive modeling of the hemodynamics of Stroop task performance. Cognitive Brain Research, 15(1), 85-97. doi:10.1016/S0926-6410(02)00218-5.
Abstract
The control of language use has in its simplest form perhaps been most intensively studied using the color–word Stroop task. The authors review chronometric and neuroimaging evidence on Stroop task performance to evaluate two prominent, implemented models of control in naming and reading: GRAIN and WEAVER++. Computer simulations are reported, which reveal that WEAVER++ offers a more satisfactory account of the data than GRAIN. In particular, we report WEAVER++ simulations of the BOLD response in anterior cingulate cortex during Stroop performance. Aspects of single-word production and perception in the Stroop task are discussed in relation to the wider problem of the control of language use. -
Ter Keurs, M., Brown, C. M., & Hagoort, P. (2002). Lexical processing of vocabulary class in patients with Broca's aphasia: An event-related brain potential study on agrammatic comprehension. Neuropsychologia, 40(9), 1547-1561. doi:10.1016/S0028-3932(02)00025-8.
Abstract
This paper presents electrophysiological evidence of an impairment in the on-line processing of word class information in patients with Broca’s aphasia with agrammatic comprehension. Event-related brain potentials (ERPs) were recorded from the scalp while Broca patients and non-aphasic control subjects read open- and closed-class words that appeared one at a time on a PC screen. Separate waveforms were computed for open- and closed-class words. The non-aphasic control subjects showed a modulation of an early left anterior negativity in the 210–325 ms as a function of vocabulary class (VC), and a late left anterior negative shift to closed-class words in the 400–700 ms epoch. An N400 effect was present in both control subjects and Broca patients. We have taken the early electrophysiological differences to reflect the first availability of word-category information from the mental lexicon. The late differences can be related to post-lexical processing. In contrast to the control subjects, the Broca patients showed no early VC effect and no late anterior shift to closed-class words. The results support the view that an incomplete and/or delayed availability of word-class information might be an important factor in Broca’s agrammatic comprehension.
Share this page