Displaying 1 - 12 of 12
-
Belke, E., & Meyer, A. S. (2007). Single and multiple object naming in healthy ageing. Language and Cognitive Processes, 22, 1178-1211. doi:10.1080/01690960701461541.
Abstract
We compared the performance of young (college-aged) and older (50+years) speakers in a single object and a multiple object naming task and assessed their susceptibility to semantic and phonological context effects when producing words amidst semantically or phonologically similar or dissimilar words. In single object naming, there were no performance differences between the age groups. In multiple object naming, we observed significant age-related slowing, expressed in longer gazes to the objects and slower speech. In addition, the direction of the phonological context effects differed for the two groups. The results of a supplementary experiment showed that young speakers, when adopting a slow speech rate, coordinated their eye movements and speech differently from the older speakers. Our results imply that age-related slowing in connected speech is not a direct consequence of a slowing of lexical retrieval processes. Instead, older speakers might allocate more processing capacity to speech monitoring processes, which would slow down their concurrent speech planning processesFiles private
Request files -
Meyer, A. S., Wheeldon, L. R., & Krott, A. (
Eds. ). (2007). Automaticity and control in language processing. Hove: Psychology Press.Abstract
The use of language is a fundamental component of much of our day-to-day life. Language often co-occurs with other activities with which it must be coordinated. This raises the question of whether the cognitive processes involved in planning spoken utterances and in understanding them are autonomous or whether they are affected by, and perhaps affect, non-linguistic cognitive processes, with which they might share processing resources. This question is the central concern of Automaticity and Control in Language Processing. The chapters address key issues concerning the relationship between linguistic and non-linguistic processes, including: * How can the degree of automaticity of a component be defined? * Which linguistic processes are truly automatic, and which require processing capacity? * Through which mechanisms can control processes affect linguistic performance? How might these mechanisms be represented in the brain? * How do limitations in working memory and executive control capacity affect linguistic performance and language re-learning in persons with brain damage? This important collection from leading international researchers will be of great interest to researchers and students in the area. -
Meyer, A. S., & Damian, M. F. (2007). Activation of distractor names in the picture-picture interference paradigm. Memory & Cognition, 35, 494-503.
Abstract
In four experiments, participants named target pictures that were accompanied by distractor pictures with phonologically related or unrelated names. Across experiments, the type of phonological relationship between the targets and the related distractors was varied: They were homophones (e.g., bat [animal/baseball]), or they shared word-initial segments (e.g., dog-doll) or word-final segments (e.g., ball-wall). The participants either named the objects after an extensive familiarization and practice phase or without any familiarization or practice. In all of the experiments, the mean target-naming latency was shorter in the related than in the unrelated condition, demonstrating that the phonological form of the name of the distractor picture became activated. These results are best explained within a cascaded model of lexical access—that is, under the assumption that the recognition of an object leads to the activation of its name. -
Meyer, A. S., Belke, E., Telling, A. L., & Humphreys, G. W. (2007). Early activation of object names in visual search. Psychonomic Bulletin & Review, 14, 710-716.
Abstract
In a visual search experiment, participants had to decide whether or not a target object was present in a four-object search array. One of these objects could be a semantically related competitor (e.g., shirt for the target trousers) or a conceptually unrelated object with the same name as the target-for example, bat (baseball) for the target bat (animal). In the control condition, the related competitor was replaced by an unrelated object. The participants' response latencies and eye movements demonstrated that the two types of related competitors had similar effects: Competitors attracted the participants' visual attention and thereby delayed positive and negative decisions. The results imply that semantic and name information associated with the objects becomes rapidly available and affects the allocation of visual attention. -
Meyer, A. S., Belke, E., Häcker, C., & Mortensen, L. (2007). Use of word length information in utterance planning. Journal of Memory and Language, 57, 210-231. doi:10.1016/j.jml.2006.10.005.
Abstract
Griffin [Griffin, Z. M. (2003). A reversed length effect in coordinating the preparation and articulation of words in speaking. Psychonomic Bulletin & Review, 10, 603-609.] found that speakers naming object pairs spent more time before utterance onset looking at the second object when the first object name was short than when it was long. She proposed that this reversed length effect arose because the speakers' decision when to initiate an utterance was based, in part, on their estimate of the spoken duration of the first object name and the time available during its articulation to plan the second object name. In Experiment I of the present study, participants named object pairs. They spent more time looking at the first object when its name was monosyllabic than when it was trisyllabic, and, as in Griffin's study, the average gaze-speech lag (the time between the end of the gaze to the first object and onset of its name, which corresponds closely to the pre-speech inspection time for the second object) showed a reversed length effect. Experiments 2 and 3 showed that this effect was not due to a trade-off between the time speakers spent looking at the first and second object before speech onset. Experiment 4 yielded a reversed length effect when the second object was replaced by a symbol (x or +), which the participants had to categorise. We propose a novel account of the reversed length effect, which links it to the incremental nature of phonological encoding and articulatory planning rather than the speaker's estimate of the length of the first object name. -
Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10(5), 553-567. doi:10.1162/089892998562960.
Abstract
The purpose of this study was to relate a psycholinguistic processing model of picture naming to the dynamics of cortical activation during picture naming. The activation was recorded from eight Dutch subjects with a whole-head neuromagnetometer. The processing model, based on extensive naming latency studies, is a stage model. In preparing a picture's name, the speaker performs a chain of specific operations. They are, in this order, computing the visual percept, activating an appropriate lexical concept, selecting the target word from the mental lexicon, phonological encoding, phonetic encoding, and initiation of articulation. The time windows for each of these operations are reasonably well known and could be related to the peak activity of dipole sources in the individual magnetic response patterns. The analyses showed a clear progression over these time windows from early occipital activation, via parietal and temporal to frontal activation. The major specific findings were that (1) a region in the left posterior temporal lobe, agreeing with the location of Wernicke's area, showed prominent activation starting about 200 msec after picture onset and peaking at about 350 msec, (i.e., within the stage of phonological encoding), and (2) a consistent activation was found in the right parietal cortex, peaking at about 230 msec after picture onset, thus preceding and partly overlapping with the left temporal response. An interpretation in terms of the management of visual attention is proposed. -
Meyer, A. S., Sleiderink, A. M., & Levelt, W. J. M. (1998). Viewing and naming objects: Eye movements during noun phrase production. Cognition, 66(2), B25-B33. doi:10.1016/S0010-0277(98)00009-2.
Abstract
Eye movements have been shown to reflect word recognition and language comprehension processes occurring during reading and auditory language comprehension. The present study examines whether the eye movements speakers make during object naming similarly reflect speech planning processes. In Experiment 1, speakers named object pairs saying, for instance, 'scooter and hat'. The objects were presented as ordinary line drawings or with partly dele:ed contours and had high or low frequency names. Contour type and frequency both significantly affected the mean naming latencies and the mean time spent looking at the objects. The frequency effects disappeared in Experiment 2, in which the participants categorized the objects instead of naming them. This suggests that the frequency effects of Experiment 1 arose during lexical retrieval. We conclude that eye movements during object naming indeed reflect linguistic planning processes and that the speakers' decision to move their eyes from one object to the next is contingent upon the retrieval of the phonological form of the object names. -
Praamstra, P., Stegeman, D. F., Cools, A. R., Meyer, A. S., & Horstink, M. W. I. M. (1998). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements: A PET study. Brain, 121, 769-772. doi:10.1093/brain/121.4.769.
-
Roelofs, A., Meyer, A. S., & Levelt, W. J. M. (1998). A case for the lemma/lexeme distinction in models of speaking: Comment on Caramazza and Miozzo (1997). Cognition, 69(2), 219-230. doi:10.1016/S0010-0277(98)00056-0.
Abstract
In a recent series of papers, Caramazza and Miozzo [Caramazza, A., 1997. How many levels of processing are there in lexical access? Cognitive Neuropsychology 14, 177-208; Caramazza, A., Miozzo, M., 1997. The relation between syntactic and phonological knowledge in lexical access: evidence from the 'tip-of-the-tongue' phenomenon. Cognition 64, 309-343; Miozzo, M., Caramazza, A., 1997. On knowing the auxiliary of a verb that cannot be named: evidence for the independence of grammatical and phonological aspects of lexical knowledge. Journal of Cognitive Neuropsychology 9, 160-166] argued against the lemma/lexeme distinction made in many models of lexical access in speaking, including our network model [Roelofs, A., 1992. A spreading-activation theory of lemma retrieval in speaking. Cognition 42, 107-142; Levelt, W.J.M., Roelofs, A., Meyer, A.S., 1998. A theory of lexical access in speech production. Behavioral and Brain Sciences, (in press)]. Their case was based on the observations that grammatical class deficits of brain-damaged patients and semantic errors may be restricted to either spoken or written forms and that the grammatical gender of a word and information about its form can be independently available in tip-of-the-tongue stales (TOTs). In this paper, we argue that though our model is about speaking, not taking position on writing, extensions to writing are possible that are compatible with the evidence from aphasia and speech errors. Furthermore, our model does not predict a dependency between gender and form retrieval in TOTs. Finally, we argue that Caramazza and Miozzo have not accounted for important parts of the evidence motivating the lemma/lexeme distinction, such as word frequency effects in homophone production, the strict ordering of gender and pho neme access in LRP data, and the chronometric and speech error evidence for the production of complex morphology. -
Roelofs, A., & Meyer, A. S. (1998). Metrical structure in planning the production of spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 922-939. doi:10.1037/0278-7393.24.4.922.
Abstract
According to most models of speech production, the planning of spoken words involves the independent retrieval of segments and metrical frames followed by segment-to-frame association. In some models, the metrical frame includes a specification of the number and ordering of consonants and vowels, but in the word-form encoding by activation and verification (WEAVER) model (A. Roelofs, 1997), the frame specifies only the stress pattern across syllables. In 6 implicit priming experiments, on each trial, participants produced 1 word out of a small set as quickly as possible. In homogeneous sets, the response words shared word-initial segments, whereas in heterogeneous sets, they did not. Priming effects from shared segments depended on all response words having the same number of syllables and stress pattern, but not on their having the same number of consonants and vowels. No priming occurred when the response words had only the same metrical frame but shared no segments. Computer simulations demonstrated that WEAVER accounts for the findings. -
Meyer, A. S. (1994). Timing in sentence production. Journal of Memory and Language, 33, 471-492. doi:doi:10.1006/jmla.1994.1022.
Abstract
Recently, a new theory of timing in sentence production has been proposed by Ferreira (1993). This theory assumes that at the phonological level, each syllable of an utterance is assigned one or more abstract timing units depending on its position in the prosodic structure. The number of timing units associated with a syllable determines the time interval between its onset and the onset of the next syllable. An interesting prediction from the theory, which was confirmed in Ferreira's experiments with speakers of American English, is that the time intervals between syllable onsets should only depend on the syllables' positions in the prosodic structure, but not on their segmental content. However, in the present experiments, which were carried out in Dutch, the intervals between syllable onsets were consistently longer for phonetically long syllables than for short syllables. The implications of this result for models of timing in sentence production are discussed. -
Praamstra, P., Meyer, A. S., & Levelt, W. J. M. (1994). Neurophysiological manifestations of auditory phonological processing: Latency variation of a negative ERP component timelocked to phonological mismatch. Journal of Cognitive Neuroscience, 6(3), 204-219. doi:10.1162/jocn.1994.6.3.204.
Abstract
Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 msec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments.
Share this page