Atsuko Takashima

Publications

Displaying 1 - 3 of 3
  • Bakker-Marshall, I., Takashima, A., Fernandez, C. B., Janzen, G., McQueen, J. M., & Van Hell, J. G. (2021). Overlapping and distinct neural networks supporting novel word learning in bilinguals and monolinguals. Bilingualism: Language and Cognition, 24(3), 524-536. doi:10.1017/S1366728920000589.

    Abstract

    This study investigated how bilingual experience alters neural mechanisms supporting novel word learning. We hypothesised that novel words elicit increased semantic activation in the larger bilingual lexicon, potentially stimulating stronger memory integration than in monolinguals. English monolinguals and Spanish–English bilinguals were trained on two sets of written Swahili–English word pairs, one set on each of two consecutive days, and performed a recognition task in the MRI-scanner. Lexical integration was measured through visual primed lexical decision. Surprisingly, no group difference emerged in explicit word memory, and priming occurred only in the monolingual group. This difference in lexical integration may indicate an increased need for slow neocortical interleaving of old and new information in the denser bilingual lexicon. The fMRI data were consistent with increased use of cognitive control networks in monolinguals and of articulatory motor processes in bilinguals, providing further evidence for experience-induced neural changes: monolinguals and bilinguals reached largely comparable behavioural performance levels in novel word learning, but did so by recruiting partially overlapping but non-identical neural systems to acquire novel words.
  • Tartaro, G., Takashima, A., & McQueen, J. M. (2021). Consolidation as a mechanism for word learning in sequential bilinguals. Bilingualism: Language and Cognition, 24(5), 864-878. doi:10.1017/S1366728921000286.

    Abstract

    First-language research suggests that new words, after initial episodic-memory encoding, are consolidated and hence become lexically integrated. We asked here if lexical consolidation, about word forms and meanings, occurs in a second language. Italian–English sequential bilinguals learned novel English-like words (e.g., apricon, taught to mean “stapler”). fMRI analyses failed to reveal a predicted shift, after consolidation time, from hippocampal to temporal neocortical activity. In a pause-detection task, responses to existing phonological competitors of learned words (e.g., apricot for apricon) were slowed down if the words had been learned two days earlier (i.e., after consolidation time) but not if they had been learned the same day. In a lexical-decision task, new words primed responses to semantically-related existing words (e.g., apricon-paper) whether the words were learned that day or two days earlier. Consolidation appears to support integration of words into the bilingual lexicon, possibly more rapidly for meanings than for forms.

    Additional information

    materials, procedure, results
  • Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.

    Abstract

    Retrieval of recently acquired declarative memories depends on
    the hippocampus, but with time, retrieval is increasingly sustainable
    by neocortical representations alone. This process has been
    conceptualized as system-level consolidation. Using functional
    magnetic resonance imaging, we assessed over the course of three
    months how consolidation affects the neural correlates of memory
    retrieval. The duration of slow-wave sleep during a nap/rest
    period after the initial study session and before the first scan
    session on day 1 correlated positively with recognition memory
    performance for items studied before the nap and negatively with
    hippocampal activity associated with correct confident recognition.
    Over the course of the entire study, hippocampal activity for
    correct confident recognition continued to decrease, whereas activity
    in a ventral medial prefrontal region increased. These findings,
    together with data obtained in rodents, may prompt a
    revision of classical consolidation theory, incorporating a transfer
    of putative linking nodes from hippocampal to prelimbic prefrontal
    areas.

Share this page