Displaying 1 - 41 of 41
-
Ekerdt, C., Menks, W. M., Fernández, G., McQueen, J. M., Takashima, A., & Janzen, G. (2024). White matter connectivity linked to novel word learning in children. Brain Structure & Function. Advance online publication. doi:10.1007/s00429-024-02857-6.
Abstract
Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14–16 years) activated more left frontal and parietal regions, the Young group (aged 8–10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.Additional information
supplementary information -
Takashima, A., Carota, F., Schoots, V., Redmann, A., Jehee, J., & Indefrey, P. (2024). Tomatoes are red: The perception of achromatic objects elicits retrieval of associated color knowledge. Journal of Cognitive Neuroscience, 36(1), 24-45. doi:10.1162/jocn_a_02068.
Abstract
When preparing to name an object, semantic knowledge about the object and its attributes is activated, including perceptual properties. It is unclear, however, whether semantic attribute activation contributes to lexical access or is a consequence of activating a concept irrespective of whether that concept is to be named or not. In this study, we measured neural responses using fMRI while participants named objects that are typically green or red, presented in black line drawings. Furthermore, participants underwent two other tasks with the same objects, color naming and semantic judgment, to see if the activation pattern we observe during picture naming is (a) similar to that of a task that requires accessing the color attribute and (b) distinct from that of a task that requires accessing the concept but not its name or color. We used representational similarity analysis to detect brain areas that show similar patterns within the same color category, but show different patterns across the two color categories. In all three tasks, activation in the bilateral fusiform gyri (“Human V4”) correlated with a representational model encoding the red–green distinction weighted by the importance of color feature for the different objects. This result suggests that when seeing objects whose color attribute is highly diagnostic, color knowledge about the objects is retrieved irrespective of whether the color or the object itself have to be named. -
Ekerdt, C., Takashima, A., & McQueen, J. M. (2023). Memory consolidation in second language neurocognition. In K. Morgan-Short, & J. G. Van Hell (
Eds. ), The Routledge handbook of second language acquisition and neurolinguistics. Oxfordshire: Routledge.Abstract
Acquiring a second language (L2) requires newly learned information to be integrated with existing knowledge. It has been proposed that several memory systems work together to enable this process of rapidly encoding new information and then slowly incorporating it with existing knowledge, such that it is consolidated and integrated into the language network without catastrophic interference. This chapter focuses on consolidation of L2 vocabulary. First, the complementary learning systems model is outlined, along with the model’s predictions regarding lexical consolidation. Next, word learning studies in first language (L1) that investigate the factors playing a role in consolidation, and the neural mechanisms underlying this, are reviewed. Using the L1 memory consolidation literature as background, the chapter then presents what is currently known about memory consolidation in L2 word learning. Finally, considering what is already known about L1 but not about L2, future research investigating memory consolidation in L2 neurocognition is proposed. -
Bakker-Marshall, I., Takashima, A., Fernandez, C. B., Janzen, G., McQueen, J. M., & Van Hell, J. G. (2021). Overlapping and distinct neural networks supporting novel word learning in bilinguals and monolinguals. Bilingualism: Language and Cognition, 24(3), 524-536. doi:10.1017/S1366728920000589.
Abstract
This study investigated how bilingual experience alters neural mechanisms supporting novel word learning. We hypothesised that novel words elicit increased semantic activation in the larger bilingual lexicon, potentially stimulating stronger memory integration than in monolinguals. English monolinguals and Spanish–English bilinguals were trained on two sets of written Swahili–English word pairs, one set on each of two consecutive days, and performed a recognition task in the MRI-scanner. Lexical integration was measured through visual primed lexical decision. Surprisingly, no group difference emerged in explicit word memory, and priming occurred only in the monolingual group. This difference in lexical integration may indicate an increased need for slow neocortical interleaving of old and new information in the denser bilingual lexicon. The fMRI data were consistent with increased use of cognitive control networks in monolinguals and of articulatory motor processes in bilinguals, providing further evidence for experience-induced neural changes: monolinguals and bilinguals reached largely comparable behavioural performance levels in novel word learning, but did so by recruiting partially overlapping but non-identical neural systems to acquire novel words. -
Tartaro, G., Takashima, A., & McQueen, J. M. (2021). Consolidation as a mechanism for word learning in sequential bilinguals. Bilingualism: Language and Cognition, 24(5), 864-878. doi:10.1017/S1366728921000286.
Abstract
First-language research suggests that new words, after initial episodic-memory encoding, are consolidated and hence become lexically integrated. We asked here if lexical consolidation, about word forms and meanings, occurs in a second language. Italian–English sequential bilinguals learned novel English-like words (e.g., apricon, taught to mean “stapler”). fMRI analyses failed to reveal a predicted shift, after consolidation time, from hippocampal to temporal neocortical activity. In a pause-detection task, responses to existing phonological competitors of learned words (e.g., apricot for apricon) were slowed down if the words had been learned two days earlier (i.e., after consolidation time) but not if they had been learned the same day. In a lexical-decision task, new words primed responses to semantically-related existing words (e.g., apricon-paper) whether the words were learned that day or two days earlier. Consolidation appears to support integration of words into the bilingual lexicon, possibly more rapidly for meanings than for forms.Additional information
materials, procedure, results -
Heidlmayr, K., Weber, K., Takashima, A., & Hagoort, P. (2020). No title, no theme: The joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex, 130, 111-126. doi:10.1016/j.cortex.2020.04.035.
Abstract
Speakers and listeners usually interact in larger discourses than single words or even single sentences. The goal of the present study was to identify the neural bases reflecting how the mental representation of the situation denoted in a multi-sentence discourse (situation model) is constructed and shared between speakers and listeners. An fMRI study using a variant of the ambiguous text paradigm was designed. Speakers (n=15) produced ambiguous texts in the scanner and listeners (n=27) subsequently listened to these texts in different states of ambiguity: preceded by a highly informative, intermediately informative or no title at all. Conventional BOLD activation analyses in listeners, as well as inter-subject correlation analyses between the speakers’ and the listeners’ hemodynamic time courses were performed. Critically, only the processing of disambiguated, coherent discourse with an intelligible situation model representation involved (shared) activation in bilateral lateral parietal and medial prefrontal regions. This shared spatiotemporal pattern of brain activation between the speaker and the listener suggests that the process of memory retrieval in medial prefrontal regions and the binding of retrieved information in the lateral parietal cortex constitutes a core mechanism underlying the communication of complex conceptual representations.Additional information
supplementary data -
Takashima, A., Konopka, A. E., Meyer, A. S., Hagoort, P., & Weber, K. (2020). Speaking in the brain: The interaction between words and syntax in sentence production. Journal of Cognitive Neuroscience, 32(8), 1466-1483. doi:10.1162/jocn_a_01563.
Abstract
This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporalgyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical–syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia. -
Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37: 100647. doi:10.1016/j.dcn.2019.100649.
Abstract
Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.Additional information
Supplementary data -
Takashima, A., & Verhoeven, L. (2019). Radical repetition effects in beginning learners of Chinese as a foreign language reading. Journal of Neurolinguistics, 50, 71-81. doi:10.1016/j.jneuroling.2018.03.001.
Abstract
The aim of the present study was to examine whether repetition of radicals during training of Chinese characters leads to better word acquisition performance in beginning learners of Chinese as a foreign language. Thirty Dutch university students were trained on 36 Chinese one-character words for their pronunciations and meanings. They were also exposed to the specifics of the radicals, that is, for phonetic radicals, the associated pronunciation was explained, and for semantic radicals the associated categorical meanings were explained. Results showed that repeated exposure to phonetic and semantic radicals through character pronunciation and meaning trainings indeed induced better understanding of those radicals that were shared among different characters. Furthermore, characters in the training set that shared phonetic radicals were pronounced better than those that did not. Repetition of semantic radicals across different characters, however, hindered the learning of exact meanings. Students generally confused the meanings of other characters that shared the semantic radical. The study shows that in the initial stage of learning, overlapping information of the shared radicals are effectively learned. Acquisition of the specifics of individual characters, however, requires more training.Additional information
Supplementary data -
Van den Broek, G. S. E., Segers, E., Van Rijn, H., Takashima, A., & Verhoeven, L. (2019). Effects of elaborate feedback during practice tests: Costs and benefits of retrieval prompts. Journal of Experimental Psychology: Applied, 25(4), 588-601. doi:10.1037/xap0000212.
Abstract
This study explores the effect of feedback with hints on students’ recall of words. In three classroom experiments, high school students individually practiced vocabulary words through computerized retrieval practice with either standard show-answer feedback (display of answer) or hints feedback after incorrect responses. Hints feedback gave students a second chance to find the correct response using orthographic (Experiment 1), mnemonic (Experiment 2), or cross-language hints (Experiment 3). During practice, hints led to a shift of practice time from further repetitions to longer feedback processing but did not reduce (repeated) errors. There was no effect of feedback on later recall except when the hints from practice were also available on the test, indicating limited transfer of practice with hints to later recall without hints (in Experiments 1 and 2). Overall, hints feedback was not preferable over show-answer feedback. The common notion that hints are beneficial may not hold when the total practice time is limited. -
Varma, S., Takashima, A., Fu, L., & Kessels, R. P. C. (2019). Mindwandering propensity modulates episodic memory consolidation. Aging Clinical and Experimental Research, 31(11), 1601-1607. doi:10.1007/s40520-019-01251-1.
Abstract
Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency.Additional information
Supplementary material -
Bakker-Marshall, I., Takashima, A., Schoffelen, J.-M., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2018). Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 30(5), 621-633. doi:10.1162/jocn_a_01240.
Abstract
Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG. -
Berkers, R. M. W. J., Ekman, M., van Dongen, E. V., Takashima, A., Barth, M., Paller, K. A., & Fernández, G. (2018). Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Scientific Reports, 8: 16958. doi:10.1038/s41598-018-35287-6.
Abstract
Memory reprocessing following acquisition enhances memory consolidation. Specifically, neural activity during encoding is thought to be ‘replayed’ during subsequent slow-wave sleep. Such memory replay is thought to contribute to the functional reorganization of neural memory traces. In particular, memory replay may facilitate the exchange of information across brain regions by inducing a reconfiguration of connectivity across the brain. Memory reactivation can be induced by external cues through a procedure known as “targeted memory reactivation”. Here, we analysed data from a published study with auditory cues used to reactivate visual object-location memories during slow-wave sleep. We characterized effects of memory reactivation on brain network connectivity using graph-theory. We found that cue presentation during slow-wave sleep increased global network integration of occipital cortex, a visual region that was also active during retrieval of object locations. Although cueing did not have an overall beneficial effect on the retention of cued versus uncued associations, individual differences in overnight memory stabilization were related to enhanced network integration of occipital cortex. Furthermore, occipital cortex displayed enhanced connectivity with mnemonic regions, namely the hippocampus, parahippocampal gyrus, thalamus and medial prefrontal cortex during cue sound presentation. Together, these results suggest a neural mechanism where cue-induced replay during sleep increases integration of task-relevant perceptual regions with mnemonic regions. This cross-regional integration may be instrumental for the consolidation and long-term storage of enduring memories.Additional information
41598_2018_35287_MOESM1_ESM.doc -
Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.
Abstract
The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers. -
Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.
Abstract
Low-frequency neural entrainment to rhythmic input
has been hypothesized as a canonical mechanism
that shapes sensory perception in time. Neural
entrainment is deemed particularly relevant for
speech analysis, as it would contribute to the extraction
of discrete linguistic elements from continuous
acoustic signals. However, its causal influence in
speech perception has been difficult to establish.
Here, we provide evidence that oscillations build temporal
predictions about the duration of speech tokens
that affect perception. Using magnetoencephalography
(MEG), we studied neural dynamics during
listening to sentences that changed in speech rate.
Weobserved neural entrainment to preceding speech
rhythms persisting for several cycles after the change
in rate. The sustained entrainment was associated
with changes in the perceived duration of the last
word’s vowel, resulting in the perception of words
with different meanings. These findings support oscillatory
models of speech processing, suggesting that
neural oscillations actively shape speech perception. -
Van den Broek, G., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention. Language Learning, 68(2), 546-585. doi:10.1111/lang.12285.
Abstract
Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short‐ and long‐term retention in three experiments. Participants studied novel words and then practiced the words either in an uninformative context that required the retrieval of word meaning from memory (“I need the funguo”) or in an informative context from which word meaning could be inferred (“I want to unlock the door: I need the funguo”). The informative context facilitated word comprehension during practice. However, later recall of word form and meaning and word recognition in a new context were better after successful retrieval practice and retrieval practice with feedback than after context‐inference practice. These findings suggest benefits of retrieval during contextualized vocabulary learning whereby the uninformative context enhanced word retention by triggering memory retrieval. -
Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.
Abstract
Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval. -
Varma, S., Daselaar, S. M., Kessels, R. P. C., & Takashima, A. (2018). Promotion and suppression of autobiographical thinking differentially affect episodic memory consolidation. PLoS One, 13(8): e0201780. doi:10.1371/journal.pone.0201780.
Abstract
During a post-encoding delay period, the ongoing consolidation of recently acquired memories can suffer interference if the delay period involves encoding of new memories, or sensory stimulation tasks. Interestingly, two recent independent studies suggest that (i) autobiographical thinking also interferes markedly with ongoing consolidation of recently learned wordlist material, while (ii) a 2-Back task might not interfere with ongoing consolidation, possibly due to the suppression of autobiographical thinking. In this study, we directly compare these conditions against a quiet wakeful rest baseline to test whether the promotion (via familiar sound-cues) or suppression (via a 2-Back task) of autobiographical thinking during the post-encoding delay period can affect consolidation of studied wordlists in a negative or a positive way, respectively. Our results successfully replicate previous studies and show a significant interference effect (as compared to the rest condition) when learning is followed by familiar sound-cues that promote autobiographical thinking, whereas no interference effect is observed when learning is followed by the 2-Back task. Results from a post-experimental experience-sampling questionnaire further show significant differences in the degree of autobiographical thinking reported during the three post-encoding periods: highest in the presence of sound-cues and lowest during the 2-Back task. In conclusion, our results suggest that varying levels of autobiographical thought during the post-encoding period may modulate episodic memory consolidation.Additional information
6932372.zip http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201780#sec019 -
Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2017). Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words. Brain and Language, 167, 44-60. doi:10.1016/j.bandl.2016.05.009.
Abstract
When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems -
Takashima, A., & Bakker, I. (2017). Memory consolidation. In H.-J. Schmid (
Ed. ), Entrenchment and the Psychology of Language Learning: How We Reorganize and Adapt Linguistic Knowledge (pp. 177-200). Berlin: De Gruyter Mouton. -
Van der Ven, F., Takashima, A., Segers, A., & Verhoeven, L. (2017). Semantic priming in Dutch children: Word meaning integration and study modality effects. Language Learning, 67(3), 546-568. doi:10.1111/lang.12235.
Files private
Request files -
Van der Ven, F., Segers, F., Takashima, A., & Verhoeven, L. (2017). Effects of a tablet game intervention on simple addition and subtraction fluency in first graders computers in human behavior. Computers in Human Behavior, 72, 200-207. doi:10.1016/j.chb.2017.02.031.
-
Van Ekert, J., Wegman, J., Jansen, C., Takashima, A., & Janzen, G. (2017). The dynamics of memory consolidation of landmarks. Hippocampus, 27(4), 303-404. doi:10.1002/hipo.22698.
Abstract
Navigating through space is fundamental to human nature and requires the ability to retrieve relevant information from the remote past. With the passage of time, some memories become generic, capturing only a sense of familiarity. Yet, others maintain precision, even when acquired decades ago. Understanding the dynamics of memory consolidation is a major challenge to neuroscientists. Using functional magnetic resonance imaging, we systematically examined the effects of time and spatial context on the neural representation of landmark recognition memory. An equal number of male and female subjects (males N = 10, total N = 20) watched a route through a large-scale virtual environment. Landmarks occurred at navigationally relevant and irrelevant locations along the route. Recognition memory for landmarks was tested directly following encoding, 24 h later and 30 days later. Surprisingly, changes over time in the neural representation of navigationally relevant landmarks differed between males and females. In males, relevant landmarks selectively engaged the parahippocampal gyrus (PHG) regardless of the age of the memory. In females, the response to relevant landmarks gradually diminished with time in the PHG but strengthened progressively in the inferior frontal gyrus (IFG). Based on what is known about the functioning of the PHG and IFG, the findings of this study suggest that males maintain access to the initially formed spatial representation of landmarks whereas females become strongly dependent on a verbal representation of landmarks with time. Our findings yield a clear objective for future studies -
Varma, S., Takashima, A., Krewinkel, S., Van Kooten, M., Fu, L., Medendorp, W. P., Kessels, R. P. C., & Daselaar, S. M. (2017). Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans. Frontiers in Behavioral Neuroscience, 11: 54. doi:10.3389/fnbeh.2017.00054.
Abstract
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories -
Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.
Abstract
Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. -
Takashima, A., Hulzink, I., Wagensveld, B., & Verhoeven, L. (2016). Emergence of representations through repeated training on pronouncing novel letter combinations leads to efficient reading. Neuropsychologia, 89, 14-30. doi:10.1016/j.neuropsychologia.2016.05.014.
Abstract
Printed text can be decoded by utilizing different processing routes depending on the familiarity of the script. A predominant use of word-level decoding strategies can be expected in the case of a familiar script, and an almost exclusive use of letter-level decoding strategies for unfamiliar scripts. Behavioural studies have revealed that frequently occurring words are read more efficiently, suggesting that these words are read in a more holistic way at the word-level, than infrequent and unfamiliar words. To test whether repeated exposure to specific letter combinations leads to holistic reading, we monitored both behavioural and neural responses during novel script decoding and examined changes related to repeated exposure. We trained a group of Dutch university students to decode pseudowords written in an unfamiliar script, i.e., Korean Hangul characters. We compared behavioural and neural responses to pronouncing trained versus untrained two-character pseudowords (equivalent to two-syllable pseudowords). We tested once shortly after the initial training and again after a four days' delay that included another training session. We found that trained pseudowords were pronounced faster and more accurately than novel combinations of radicals (equivalent to letters). Imaging data revealed that pronunciation of trained pseudowords engaged the posterior temporo-parietal region, and engagement of this network was predictive of reading efficiency a month later. The results imply that repeated exposure to specific combinations of graphemes can lead to emergence of holistic representations that result in efficient reading. Furthermore, inter-individual differences revealed that good learners retained efficiency more than bad learners one month laterAdditional information
mmc1.docx -
Takashima, A., Van de Ven, F., Kroes, M. C. W., & Fernández, G. (2016). Retrieved emotional context influences hippocampal involvement during recognition of neutral memories. NeuroImage, 143, 280-292. doi:10.1016/j.neuroimage.2016.08.069.
Abstract
It is well documented that emotionally arousing experiences are better remembered than mundane events. This is thought to occur through hippocampus-amygdala crosstalk during encoding, consolidation, and retrieval. Here we investigated whether emotional events (context) also cause a memory benefit for simultaneously encoded non-arousing contents and whether this effect persists after a delay via recruitment of a similar hippocampus-amygdala network. Participants studied neutral pictures (content) encoded together with either an arousing or a neutral sound (that served as context) in two study sessions three days apart. Memory was tested in a functional magnetic resonance scanner directly after the second study session. Pictures recognised with high confidence were more often thought to have been associated with an arousing than with a neutral context, irrespective of the veridical source memory. If the retrieved context was arousing, an area in the hippocampus adjacent to the amygdala exhibited heightened activation and this area increased functional connectivity with the parahippocampal gyrus, an area known to process pictures of scenes. These findings suggest that memories can be shaped by the retrieval act. Memory structures may be recruited to a higher degree when an arousing context is retrieved, and this may give rise to confident judgments of recognition for neutral pictures even after a delay -
Van den Broek, G., Takashima, A., Wiklund-Hörnqvist, C., Karlsson-Wirebring, L., Segers, E., Verhoeven, L., & Nyberg, L. (2016). Neurocognitive mechanisms of the “testing effect”: A review. Trends in Neuroscience Education, 5, 52-66. doi:10.1016/j.tine.2016.05.001.
Abstract
Memory retrieval is an active process that can alter the content and accessibility of stored memories. Of potential relevance for educational practice are findings that memory retrieval fosters better retention than mere studying. This so-called testing effect has been demonstrated for different materials and populations, but there is limited consensus on the neurocognitive mechanisms involved. In this review, we relate cognitive accounts of the testing effect to findings from recent brain-imaging studies to identify neurocognitive factors that could explain the testing effect. Results indicate that testing facilitates later performance through several processes, including effects on semantic memory representations, the selective strengthening of relevant associations and inhibition of irrelevant associations, as well as potentiation of subsequent learning -
Van den Broek, G., Takashima, A., Wiklund-Hörnqvist, C., Karlsson-Wirebring, C., Segers, E., Verhoeven, L., & Nyberg, L. (2016). Neurocognitive mechanisms of the “testing effect”: A review. Trends in Neuroscience and Education, 5(2), 52-66. doi:10.1016/j.tine.2016.05.001.
Abstract
Memory retrieval is an active process that can alter the content and accessibility of stored memories. Of potential relevance for educational practice are findings that memory retrieval fosters better retention than mere studying. This so-called testing effect has been demonstrated for different materials and populations, but there is limited consensus on the neurocognitive mechanisms involved. In this review, we relate cognitive accounts of the testing effect to findings from recent brain-imaging studies to identify neurocognitive factors that could explain the testing effect. Results indicate that testing facilitates later performance through several processes, including effects on semantic memory representations, the selective strengthening of relevant associations and inhibition of irrelevant associations, as well as potentiation of subsequent learning. -
Van der Ven, F., Takashima, A., Segers, E., Fernández, G., & Verhoeven, L. (2016). Non-symbolic and symbolic notation in simple arithmetic differentially involve intraparietal sulcus and angular gyrus activity. Brain Research, 1643, 91-102.
Abstract
Addition problems can be solved by mentally manipulating quantities for which the bilateral intraparietal sulcus (IPS) is likely recruited, or by retrieving the answer directly from fact memory in which the left angular gyrus (AG) and perisylvian areas may play a role. Mental addition is usually studied with problems presented in the Arabic notation (4+2), and less so with number words (four+two) or dots (:: +·.). In the present study, we investigated how the notation of numbers influences processing during simple mental arithmetic. Twenty-five highly educated participants performed simple arithmetic while their brain activity was recorded with functional magnetic resonance imaging. To reveal the effect of number notation, arithmetic problems were presented in a non-symbolic (Dots) or symbolic (Arabic; Words) notation. Furthermore, we asked whether IPS processing during mental arithmetic is magnitude specific or of a more general, visuospatial nature. To this end, we included perception and manipulation of non-magnitude formats (Colors; unfamiliar Japanese Characters). Increased IPS activity was observed, suggesting magnitude calculations during addition of non-symbolic numbers. In contrast, there was greater activity in the AG and perisylvian areas for symbolic compared to non-symbolic addition, suggesting increased verbal fact retrieval. Furthermore, IPS activity was not specific to processing of numerical magnitude but also present for non-magnitude stimuli that required mental visuospatial processing (Color-mixing; Character-memory measured by a delayed match-to-sample task). Together, our data suggest that simple non-symbolic sums are calculated using visual imagery, whereas answers for simple symbolic sums are retrieved from verbal memory. -
Bakker, I., Takashima, A., Van Hall, J. G., & McQueen, J. M. (2015). Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of cognitive neuroscience, 27(7), 1286-1297. doi:10.1162/jocn_a_00801.
Abstract
The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4–8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16–21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations. -
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. Neuropsychologia, 79, 33-41. doi:10.1016/j.neuropsychologia.2015.10.020.
-
Sweegers, C. C. G., Takashima, A., Fernández, G., & Talamini, L. M. (2015). Neural mechanisms supporting the extraction of general knowledge across episodic memories. NeuroImage, 87, 138-146. doi:10.1016/j.neuroimage.2013.10.063.
Abstract
General knowledge acquisition entails the extraction of statistical regularities from the environment. At high levels of complexity, this may involve the extraction, and consolidation, of associative regularities across event memories. The underlying neural mechanisms would likely involve a hippocampo-neocortical dialog, as proposed previously for system-level consolidation. To test these hypotheses, we assessed possible differences in consolidation between associative memories containing cross-episodic regularities and unique associative memories. Subjects learned face–location associations, half of which responded to complex regularities regarding the combination of facial features and locations, whereas the other half did not. Importantly, regularities could only be extracted over hippocampus-encoded, associative aspects of the items. Memory was assessed both immediately after encoding and 48 h later, under fMRI acquisition. Our results suggest that processes related to system-level reorganization occur preferentially for regular associations across episodes. Moreover, the build-up of general knowledge regarding regular associations appears to involve the coordinated activity of the hippocampus and mediofrontal regions. The putative cross-talk between these two regions might support a mechanism for regularity extraction. These findings suggest that the consolidation of cross-episodic regularities may be a key mechanism underlying general knowledge acquisition. -
Thielen, J.-W., Takashima, A., Rutters, F., Tendolkar, I., & Fernandez, G. (2015). Transient relay function of midline thalamic nuclei during long-term memory consolidation in humans. Learning & Memory, 22, 527-531. doi:10.1101/lm.038372.115.
Abstract
To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a parahippocampal area, which decreased with time. In turn, mPFC-parahippocampal connectivity increased progressively. These findings support a model in which thalamic midline nuclei serve as a hub linking hippocampus, mPFC, and posterior representational areas during memory retrieval at an early (2 h) stage of consolidation, extending classical systems consolidation models by attributing a transient role to midline thalamic nuclei. -
van der Ven, F., Takashima, A., Segers, E., & Verhoeven, L. (2015). Learning Word Meanings: Overnight Integration and Study Modality Effects. PLoS One, 10. doi:10.1371/journal.pone.0124926.
Abstract
According to the complementary learning systems (CLS) account of word learning, novel words are rapidly acquired (learning system 1), but slowly integrated into the mental lexicon (learning system 2). This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning. -
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Competition from unseen or unheard novel words: Lexical consolidation across modalities. Journal of Memory and Language, 73, 116-139. doi:10.1016/j.jml.2014.03.002.
Abstract
In four experiments we investigated the formation of novel word memories across modalities, using competition between novel words and their existing phonological/orthographic neighbours as a test of lexical integration. Auditorily acquired novel words entered into competition both in the spoken modality (Experiment 1) and in the written modality (Experiment 4) after a consolidation period of 24 h. Words acquired from print, on the other hand, showed competition effects after 24 h in a visual word recognition task (Experiment 3) but required additional training and a consolidation period of a week before entering into spoken-word competition (Experiment 2). These cross-modal effects support the hypothesis that lexicalised rather than episodic representations underlie post-consolidation competition effects. We suggest that sublexical phoneme–grapheme conversion during novel word encoding and/or offline consolidation enables the formation of modality-specific lexemes in the untrained modality, which subsequently undergo the same cortical integration process as explicitly perceived word forms in the trained modality. Although conversion takes place in both directions, speech input showed an advantage over print both in terms of lexicalisation and explicit memory performance. In conclusion, the brain is able to integrate and consolidate internally generated lexical information as well as external perceptual input. -
Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.
Abstract
To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords. -
Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Richness of information about novel words influences how episodic and semantic memory networks interact during lexicalization. NeuroImage, 84, 265-278. doi:10.1016/j.neuroimage.2013.08.023.
Abstract
The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24 hours. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words’ phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words’ phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24 hours’ delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding. -
Piai, V., Roelofs, A., Acheson, D. J., & Takashima, A. (2013). Attention for speaking: Neural substrates of general and specific mechanisms for monitoring and control. Frontiers in Human Neuroscience, 7: 832. doi:10.3389/fnhum.2013.00832.
Abstract
Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control. -
Takashima, A., Nieuwenhuis, I. L. C., Rijpkema, M., Petersson, K. M., Jensen, O., & Fernández, G. (2007). Memory trace stabilization leads to large-scale changes in the retrieval network: A functional MRI study on associative memory. Learning & Memory, 14, 472-479. doi:10.1101/lm.605607.
Abstract
Spaced learning with time to consolidate leads to more stabile memory traces. However, little is known about the neural correlates of trace stabilization, especially in humans. The present fMRI study contrasted retrieval activity of two well-learned sets of face-location associations, one learned in a massed style and tested on the day of learning (i.e., labile condition) and another learned in a spaced scheme over the course of one week (i.e., stabilized condition). Both sets of associations were retrieved equally well, but the retrieval of stabilized association was faster and accompanied by large-scale changes in the network supporting retrieval. Cued recall of stabilized as compared with labile associations was accompanied by increased activity in the precuneus, the ventromedial prefrontal cortex, the bilateral temporal pole, and left temporo–parietal junction. Conversely, memory representational areas such as the fusiform gyrus for faces and the posterior parietal cortex for locations did not change their activity with stabilization. The changes in activation in the precuneus, which also showed increased connectivity with the fusiform area, are likely to be related to the spatial nature of our task. The activation increase in the ventromedial prefrontal cortex, on the other hand, might reflect a general function in stabilized memory retrieval. This area might succeed the hippocampus in linking distributed neocortical representations. -
Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.
Abstract
Retrieval of recently acquired declarative memories depends on
the hippocampus, but with time, retrieval is increasingly sustainable
by neocortical representations alone. This process has been
conceptualized as system-level consolidation. Using functional
magnetic resonance imaging, we assessed over the course of three
months how consolidation affects the neural correlates of memory
retrieval. The duration of slow-wave sleep during a nap/rest
period after the initial study session and before the first scan
session on day 1 correlated positively with recognition memory
performance for items studied before the nap and negatively with
hippocampal activity associated with correct confident recognition.
Over the course of the entire study, hippocampal activity for
correct confident recognition continued to decrease, whereas activity
in a ventral medial prefrontal region increased. These findings,
together with data obtained in rodents, may prompt a
revision of classical consolidation theory, incorporating a transfer
of putative linking nodes from hippocampal to prelimbic prefrontal
areas.
Share this page