Antje Meyer

Publications

Displaying 1 - 16 of 16
  • Duñabeitia, J. A., Crepaldi, D., Meyer, A. S., New, B., Pliatsikas, C., Smolka, E., & Brysbaert, M. (2018). MultiPic: A standardized set of 750 drawings with norms for six European languages. Quarterly Journal of Experimental Psychology, 71(4), 808-816. doi:10.1080/17470218.2017.1310261.

    Abstract

    Numerous studies in psychology, cognitive neuroscience and psycholinguistics have used pictures of objects as stimulus materials. Currently, authors engaged in cross-linguistic work or wishing to run parallel studies at multiple sites where different languages are spoken must rely on rather small sets of black-and-white or colored line drawings. These sets are increasingly experienced as being too limited. Therefore, we constructed a new set of 750 colored pictures of concrete concepts. This set, MultiPic, constitutes a new valuable tool for cognitive scientists investigating language, visual perception, memory and/or attention in monolingual or multilingual populations. Importantly, the MultiPic databank has been normed in six different European languages (British English, Spanish, French, Dutch, Italian and German). All stimuli and norms are freely available at http://www.bcbl.eu/databases/multipic

    Additional information

    http://www.bcbl.eu/databases/multipic
  • Fairs, A., Bögels, S., & Meyer, A. S. (2018). Dual-tasking with simple linguistic tasks: Evidence for serial processing. Acta Psychologica, 191, 131-148. doi:10.1016/j.actpsy.2018.09.006.

    Abstract

    In contrast to the large amount of dual-task research investigating the coordination of a linguistic and a nonlinguistic
    task, little research has investigated how two linguistic tasks are coordinated. However, such research
    would greatly contribute to our understanding of how interlocutors combine speech planning and listening in
    conversation. In three dual-task experiments we studied how participants coordinated the processing of an
    auditory stimulus (S1), which was either a syllable or a tone, with selecting a name for a picture (S2). Two SOAs,
    of 0 ms and 1000 ms, were used. To vary the time required for lexical selection and to determine when lexical
    selection took place, the pictures were presented with categorically related or unrelated distractor words. In
    Experiment 1 participants responded overtly to both stimuli. In Experiments 2 and 3, S1 was not responded to
    overtly, but determined how to respond to S2, by naming the picture or reading the distractor aloud. Experiment
    1 yielded additive effects of SOA and distractor type on the picture naming latencies. The presence of semantic
    interference at both SOAs indicated that lexical selection occurred after response selection for S1. With respect to
    the coordination of S1 and S2 processing, Experiments 2 and 3 yielded inconclusive results. In all experiments,
    syllables interfered more with picture naming than tones. This is likely because the syllables activated phonological
    representations also implicated in picture naming. The theoretical and methodological implications of the
    findings are discussed.

    Additional information

    1-s2.0-S0001691817305589-mmc1.pdf
  • Konopka, A., Meyer, A. S., & Forest, T. A. (2018). Planning to speak in L1 and L2. Cognitive Psychology, 102, 72-104. doi:10.1016/j.cogpsych.2017.12.003.

    Abstract

    The leading theories of sentence planning – Hierarchical Incrementality and Linear Incrementality – differ in their assumptions about the coordination of processes that map preverbal information onto language. Previous studies showed that, in native (L1) speakers, this coordination can vary with the ease of executing the message-level and sentence-level processes necessary to plan and produce an utterance. We report the first series of experiments to systematically examine how linguistic experience influences sentence planning in native (L1) speakers (i.e., speakers with life-long experience using the target language) and non-native (L2) speakers (i.e., speakers with less experience using the target language). In all experiments, speakers spontaneously generated one-sentence descriptions of simple events in Dutch (L1) and English (L2). Analyses of eye-movements across early and late time windows (pre- and post-400 ms) compared the extent of early message-level encoding and the onset of linguistic encoding. In Experiment 1, speakers were more likely to engage in extensive message-level encoding and to delay sentence-level encoding when using their L2. Experiments 2–4 selectively facilitated encoding of the preverbal message, encoding of the agent character (i.e., the first content word in active sentences), and encoding of the sentence verb (i.e., the second content word in active sentences) respectively. Experiment 2 showed that there is no delay in the onset of L2 linguistic encoding when speakers are familiar with the events. Experiments 3 and 4 showed that the delay in the onset of L2 linguistic encoding is not due to speakers delaying encoding of the agent, but due to a preference to encode information needed to select a suitable verb early in the formulation process. Overall, speakers prefer to temporally separate message-level from sentence-level encoding and to prioritize encoding of relational information when planning L2 sentences, consistent with Hierarchical Incrementality
  • Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.

    Abstract

    Low-frequency neural entrainment to rhythmic input
    has been hypothesized as a canonical mechanism
    that shapes sensory perception in time. Neural
    entrainment is deemed particularly relevant for
    speech analysis, as it would contribute to the extraction
    of discrete linguistic elements from continuous
    acoustic signals. However, its causal influence in
    speech perception has been difficult to establish.
    Here, we provide evidence that oscillations build temporal
    predictions about the duration of speech tokens
    that affect perception. Using magnetoencephalography
    (MEG), we studied neural dynamics during
    listening to sentences that changed in speech rate.
    Weobserved neural entrainment to preceding speech
    rhythms persisting for several cycles after the change
    in rate. The sustained entrainment was associated
    with changes in the perceived duration of the last
    word’s vowel, resulting in the perception of words
    with different meanings. These findings support oscillatory
    models of speech processing, suggesting that
    neural oscillations actively shape speech perception.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2018). Listening to yourself is special: Evidence from global speech rate tracking. PLoS One, 13(9): e0203571. doi:10.1371/journal.pone.0203571.

    Abstract

    Listeners are known to use adjacent contextual speech rate in processing temporally ambiguous speech sounds. For instance, an ambiguous vowel between short /A/ and long /a:/ in Dutch sounds relatively long (i.e., as /a:/) embedded in a fast precursor sentence, but short in a slow sentence. Besides the local speech rate, listeners also track talker-specific global speech rates. However, it is yet unclear whether other talkers' global rates are encoded with reference to a listener's self-produced rate. Three experiments addressed this question. In Experiment 1, one group of participants was instructed to speak fast, whereas another group had to speak slowly. The groups were compared on their perception of ambiguous /A/-/a:/ vowels embedded in neutral rate speech from another talker. In Experiment 2, the same participants listened to playback of their own speech and again evaluated target vowels in neutral rate speech. Neither of these experiments provided support for the involvement of self-produced speech in perception of another talker's speech rate. Experiment 3 repeated Experiment 2 but with a new participant sample that was unfamiliar with the participants from Experiment 2. This experiment revealed fewer /a:/ responses in neutral speech in the group also listening to a fast rate, suggesting that neutral speech sounds slow in the presence of a fast talker and vice versa. Taken together, the findings show that self-produced speech is processed differently from speech produced by others. They carry implications for our understanding of the perceptual and cognitive mechanisms involved in rate-dependent speech perception in dialogue settings.
  • Meyer, A. S., Alday, P. M., Decuyper, C., & Knudsen, B. (2018). Working together: Contributions of corpus analyses and experimental psycholinguistics to understanding conversation. Frontiers in Psychology, 9: 525. doi:10.3389/fpsyg.2018.00525.

    Abstract

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

    Additional information

    Data_Sheet_1.pdf
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2018). The role of community size in the emergence of linguistic structure. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 402-404). Toruń, Poland: NCU Press. doi:10.12775/3991-1.096.
  • Schillingmann, L., Ernst, J., Keite, V., Wrede, B., Meyer, A. S., & Belke, E. (2018). AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes. Behavior Research Methods, 50(2), 466-489. doi:10.3758/s13428-017-1002-7.

    Abstract

    In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-word and four-word utterances as well as semi-spontaneous speech. AlignTool performs well with audio signals with an excellent signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language production research.
  • Shao, Z., & Meyer, A. S. (2018). Word priming and interference paradigms. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 111-129). Hoboken: Wiley.
  • Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.

    Abstract

    When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings.
  • Barthel, M., Sauppe, S., Levinson, S. C., & Meyer, A. S. (2016). The timing of utterance planning in task-oriented dialogue: Evidence from a novel list-completion paradigm. Frontiers in Psychology, 7: 1858. doi:10.3389/fpsyg.2016.01858.

    Abstract

    In conversation, interlocutors rarely leave long gaps between turns, suggesting that next speak- ers begin to plan their turns while listening to the previous speaker. The present experiment used analyses of speech onset latencies and eye-movements in a task-oriented dialogue paradigm to investigate when speakers start planning their response. Adult German participants heard a confederate describe sets of objects in utterances that either ended in a noun (e.g. Ich habe eine Tür und ein Fahrrad (‘I have a door and a bicycle’)) or a verb form (Ich habe eine Tür und ein Fahrrad besorgt (‘I have gotten a door and a bicycle’)), while the presence or absence of the final verb either was or was not predictable from the preceding sentence structure. In response, participants had to name any unnamed objects they could see in their own display in utterances such as Ich habe ein Ei (‘I have an egg’). The main question was when participants started to plan their response. The results are consistent with the view that speakers begin to plan their turn as soon as sufficient information is available to do so, irrespective of further incoming words.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2016). Encouraging prediction during production facilitates subsequent comprehension: Evidence from interleaved object naming in sentence context and sentence reading. Quarterly Journal of Experimental Psychology, 69(6), 1056-1063. doi:10.1080/17470218.2015.1131309.

    Abstract

    Many studies have shown that a supportive context facilitates language comprehension. A currently influential view is that language production may support prediction in language comprehension. Experimental evidence for this, however, is relatively sparse. Here we explored whether encouraging prediction in a language production task encourages the use of predictive contexts in an interleaved comprehension task. In Experiment 1a, participants listened to the first part of a sentence and provided the final word by naming aloud a picture. The picture name was predictable or not predictable from the sentence context. Pictures were named faster when they could be predicted than when this was not the case. In Experiment 1b the same sentences, augmented by a final spill-over region, were presented in a self-paced reading task. No difference in reading times for predictive vs. non-predictive sentences was found. In Experiment 2, reading and naming trials were intermixed. In the naming task, the advantage for predictable picture names was replicated. More importantly, now reading times for the spill-over region were considerable faster for predictive vs. non-predictive sentences. We conjecture that these findings fit best with the notion that prediction in the service of language production encourages the use of predictive contexts in comprehension. Further research is required to identify the exact mechanisms by which production exerts its influence on comprehension.
  • Meyer, A. S., Huettig, F., & Levelt, W. J. M. (2016). Same, different, or closely related: What is the relationship between language production and comprehension? Journal of Memory and Language, 89, 1-7. doi:10.1016/j.jml.2016.03.002.
  • Meyer, A. S., & Huettig, F. (Eds.). (2016). Speaking and Listening: Relationships Between Language Production and Comprehension [Special Issue]. Journal of Memory and Language, 89.
  • Tromp, J., Hagoort, P., & Meyer, A. S. (2016). Pupillometry reveals increased pupil size during indirect request comprehension. Quarterly Journal of Experimental Psychology, 69, 1093-1108. doi:10.1080/17470218.2015.1065282.

    Abstract

    Fluctuations in pupil size have been shown to reflect variations in processing demands during lexical and syntactic processing in language comprehension. An issue that has not received attention is whether pupil size also varies due to pragmatic manipulations. In two pupillometry experiments, we investigated whether pupil diameter was sensitive to increased processing demands as a result of comprehending an indirect request versus a direct statement. Adult participants were presented with 120 picture–sentence combinations that could be interpreted either as an indirect request (a picture of a window with the sentence “it's very hot here”) or as a statement (a picture of a window with the sentence “it's very nice here”). Based on the hypothesis that understanding indirect utterances requires additional inferences to be made on the part of the listener, we predicted a larger pupil diameter for indirect requests than statements. The results of both experiments are consistent with this expectation. We suggest that the increase in pupil size reflects additional processing demands for the comprehension of indirect requests as compared to statements. This research demonstrates the usefulness of pupillometry as a tool for experimental research in pragmatics
  • Vuong, L., Meyer, A. S., & Christiansen, M. H. (2016). Concurrent statistical learning of adjacent and nonadjacent dependencies. Language Learning, 66, 8-30. doi:10.1111/lang.12137.

    Abstract

    When children learn their native language, they have to deal with a confusing array of dependencies between various elements in an utterance. The dependent elements may be adjacent to one another or separated by intervening material. Prior studies suggest that nonadjacent dependencies are hard to learn when the intervening material has little variability, which may be due to a trade-off between adjacent and nonadjacent learning. In this study, we investigate the statistical learning of adjacent and nonadjacent dependencies under low intervening variability using a modified serial reaction time (SRT) task. Young adults were trained on mixed sets of materials comprising equally probable adjacent and nonadjacent dependencies. Offline tests administered after training showed better performance for adjacent than nonadjacent dependencies. However, online SRT data indicated that the participants developed sensitivity to both types of dependencies during training, with no significant differences between dependency types. The results demonstrate the value of online measures of learning and suggest that adjacent and nonadjacent learning can occur together even when there is low variability in the intervening material

Share this page