Displaying 1 - 5 of 5
-
Tsutsui, S., Wang, X., Weng, G., Zhang, Y., Crandall, D., & Yu, C. (2022). Action recognition based on cross-situational action-object statistics. In Proceedings of the 2022 IEEE International Conference on Development and Learning (ICDL 2022).
Abstract
Machine learning models of visual action recognition are typically trained and tested on data from specific situations where actions are associated with certain objects. It is an open question how action-object associations in the training set influence a model's ability to generalize beyond trained situations. We set out to identify properties of training data that lead to action recognition models with greater generalization ability. To do this, we take inspiration from a cognitive mechanism called cross-situational learning, which states that human learners extract the meaning of concepts by observing instances of the same concept across different situations. We perform controlled experiments with various types of action-object associations, and identify key properties of action-object co-occurrence in training data that lead to better classifiers. Given that these properties are missing in the datasets that are typically used to train action classifiers in the computer vision literature, our work provides useful insights on how we should best construct datasets for efficiently training for better generalization. -
Zhang, Y., & Yu, C. (2022). Examining real-time attention dynamics in parent-infant picture book reading. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (
Eds. ), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 1367-1374). Toronto, Canada: Cognitive Science Society.Abstract
Picture book reading is a common word-learning context from which parents repeatedly name objects to their child and it has been found to facilitate early word learning. To learn the correct word-object mappings in a book-reading context, infants need to be able to link what they see with what they hear. However, given multiple objects on every book page, it is not clear how infants direct their attention to objects named by parents. The aim of the current study is to examine how infants mechanistically discover the correct word-object mappings during book reading in real time. We used head-mounted eye-tracking during parent-infant picture book reading and measured the infant's moment-by-moment visual attention to the named referent. We also examined how gesture cues provided by both the child and the parent may influence infants' attention to the named target. We found that although parents provided many object labels during book reading, infants were not able to attend to the named objects easily. However, their abilities to follow and use gestures to direct the other social partner’s attention increase the chance of looking at the named target during parent naming. -
Romberg, A., Zhang, Y., Newman, B., Triesch, J., & Yu, C. (2016). Global and local statistical regularities control visual attention to object sequences. In Proceedings of the 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 262-267).
Abstract
Many previous studies have shown that both infants and adults are skilled statistical learners. Because statistical learning is affected by attention, learners' ability to manage their attention can play a large role in what they learn. However, it is still unclear how learners allocate their attention in order to gain information in a visual environment containing multiple objects, especially how prior visual experience (i.e., familiarly of objects) influences where people look. To answer these questions, we collected eye movement data from adults exploring multiple novel objects while manipulating object familiarity with global (frequencies) and local (repetitions) regularities. We found that participants are sensitive to both global and local statistics embedded in their visual environment and they dynamically shift their attention to prioritize some objects over others as they gain knowledge of the objects and their distributions within the task. -
Zhang, Y., & Yu, C. (2016). Examining referential uncertainty in naturalistic contexts from the child’s view: Evidence from an eye-tracking study with infants. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 2027-2032). Austin, TX: Cognitive Science Society.Abstract
Young Infants are prolific word learners even though they are facing the challenge of referential uncertainty (Quine, 1960). Many laboratory studies have shown that infants are skilled at inferring correct referents of words from ambiguous contexts (Swingley, 2009). However, little is known regarding how they visually attend to and select the target object among many other objects in view when parents name it during everyday interactions. By investigating the looking pattern of 12-month-old infants using naturalistic first-person images with varying degrees of referential ambiguity, we found that infants’ attention is selective and they only select a small subset of objects to attend to at each learning instance despite the complexity of the data in the real world. This work allows us to better understand how perceptual properties of objects in infants’ view influence their visual attention, which is also related to how they select candidate objects to build word-object mappings. -
Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (
Eds. ), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.Abstract
In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.
Share this page