Displaying 1 - 4 of 4
-
Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (
Eds. ), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).Abstract
In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents. -
Romberg, A., Zhang, Y., Newman, B., Triesch, J., & Yu, C. (2016). Global and local statistical regularities control visual attention to object sequences. In Proceedings of the 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 262-267).
Abstract
Many previous studies have shown that both infants and adults are skilled statistical learners. Because statistical learning is affected by attention, learners' ability to manage their attention can play a large role in what they learn. However, it is still unclear how learners allocate their attention in order to gain information in a visual environment containing multiple objects, especially how prior visual experience (i.e., familiarly of objects) influences where people look. To answer these questions, we collected eye movement data from adults exploring multiple novel objects while manipulating object familiarity with global (frequencies) and local (repetitions) regularities. We found that participants are sensitive to both global and local statistics embedded in their visual environment and they dynamically shift their attention to prioritize some objects over others as they gain knowledge of the objects and their distributions within the task. -
Zhang, Y., & Yu, C. (2016). Examining referential uncertainty in naturalistic contexts from the child’s view: Evidence from an eye-tracking study with infants. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 2027-2032). Austin, TX: Cognitive Science Society.Abstract
Young Infants are prolific word learners even though they are facing the challenge of referential uncertainty (Quine, 1960). Many laboratory studies have shown that infants are skilled at inferring correct referents of words from ambiguous contexts (Swingley, 2009). However, little is known regarding how they visually attend to and select the target object among many other objects in view when parents name it during everyday interactions. By investigating the looking pattern of 12-month-old infants using naturalistic first-person images with varying degrees of referential ambiguity, we found that infants’ attention is selective and they only select a small subset of objects to attend to at each learning instance despite the complexity of the data in the real world. This work allows us to better understand how perceptual properties of objects in infants’ view influence their visual attention, which is also related to how they select candidate objects to build word-object mappings. -
Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (
Eds. ), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.Abstract
In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.
Share this page