Yayun Zhang

Publications

Displaying 1 - 5 of 5
  • Ronderos, C. R., Zhang, Y., & Rubio-Fernandez, P. (2024). Weighted parameters in demonstrative use: The case of Spanish teens and adults. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 3279-3286).
  • Sander, J., Çetinçelik, M., Zhang, Y., Rowland, C. F., & Harmon, Z. (2024). Why does joint attention predict vocabulary acquisition? The answer depends on what coding scheme you use. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1607-1613).

    Abstract

    Despite decades of study, we still know less than we would like about the association between joint attention (JA) and language acquisition. This is partly because of disagreements on how to operationalise JA. In this study, we examine the impact of applying two different, influential JA operationalisation schemes to the same dataset of child-caregiver interactions, to determine which yields a better fit to children's later vocabulary size. Two coding schemes— one defining JA in terms of gaze overlap and one in terms of social aspects of shared attention—were applied to video-recordings of dyadic naturalistic toy-play interactions (N=45). We found that JA was predictive of later production vocabulary when operationalised as shared focus (study 1), but also that its operationalisation as shared social awareness increased its predictive power (study 2). Our results emphasise the critical role of methodological choices in understanding how and why JA is associated with vocabulary size.
  • Yang, J., Zhang, Y., & Yu, C. (2024). Learning semantic knowledge based on infant real-time. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 741-747).

    Abstract

    Early word learning involves mapping individual words to their meanings and building organized semantic representations among words. Previous corpus-based studies (e.g., using text from websites, newspapers, child-directed speech corpora) demonstrated that linguistic information such as word co-occurrence alone is sufficient to build semantically organized word knowledge. The present study explored two new research directions to advance understanding of how infants acquire semantically organized word knowledge. First, infants in the real world hear words surrounded by contextual information. Going beyond inferring semantic knowledge merely from language input, we examined the role of extra-linguistic contextual information in learning semantic knowledge. Second, previous research relies on large amounts of linguistic data to demonstrate in-principle learning, which is unrealistic compared with the input children receive. Here, we showed that incorporating extra-linguistic information provides an efficient mechanism through which semantic knowledge can be acquired with a small amount of data infants perceive in everyday learning contexts, such as toy play.

    Additional information

    link to eScholarship
  • Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).

    Abstract

    In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.

Share this page