Yayun Zhang

Publications

Displaying 1 - 6 of 6
  • Liu, S., & Zhang, Y. (2019). Why some verbs are harder to learn than others – A micro-level analysis of everyday learning contexts for early verb learning. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2173-2178). Montreal, QB: Cognitive Science Society.

    Abstract

    Verb learning is important for young children. While most
    previous research has focused on linguistic and conceptual
    challenges in early verb learning (e.g. Gentner, 1982, 2006),
    the present paper examined early verb learning at the
    attentional level and quantified the input for early verb learning
    by measuring verb-action co-occurrence statistics in parent-
    child interaction from the learner’s perspective. To do so, we
    used head-mounted eye tracking to record fine-grained
    multimodal behaviors during parent-infant joint play, and
    analyzed parent speech, parent and infant action, and infant
    attention at the moments when parents produced verb labels.
    Our results show great variability across different action verbs,
    in terms of frequency of verb utterances, frequency of
    corresponding actions related to verb meanings, and infants’
    attention to verbs and actions, which provide new insights on
    why some verbs are harder to learn than others.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Chen, C.-h., Zhang, Y., & Yu, C. (2018). Learning object names at different hierarchical levels using cross-situational statistics. Cognitive Science, 42(S2), 591-605. doi:10.1111/cogs.12516.

    Abstract

    Objects in the world usually have names at different hierarchical levels (e.g., beagle, dog, animal). This research investigates adults' ability to use cross-situational statistics to simultaneously learn object labels at individual and category levels. The results revealed that adults were able to use co-occurrence information to learn hierarchical labels in contexts where the labels for individual objects and labels for categories were presented in completely separated blocks, in interleaved blocks, or mixed in the same trial. Temporal presentation schedules significantly affected the learning of individual object labels, but not the learning of category labels. Learners' subsequent generalization of category labels indicated sensitivity to the structure of statistical input.
  • Slone, L. K., Abney, D. H., Borjon, J. I., Chen, C.-h., Franchak, J. M., Pearcy, D., Suarez-Rivera, C., Xu, T. L., Zhang, Y., Smith, L. B., & Yu, C. (2018). Gaze in action: Head-mounted eye tracking of children's dynamic visual attention during naturalistic behavior. Journal of Visualized Experiments, (141): e58496. doi:10.3791/58496.

    Abstract

    Young children's visual environments are dynamic, changing moment-by-moment as children physically and visually explore spaces and objects and interact with people around them. Head-mounted eye tracking offers a unique opportunity to capture children's dynamic egocentric views and how they allocate visual attention within those views. This protocol provides guiding principles and practical recommendations for researchers using head-mounted eye trackers in both laboratory and more naturalistic settings. Head-mounted eye tracking complements other experimental methods by enhancing opportunities for data collection in more ecologically valid contexts through increased portability and freedom of head and body movements compared to screen-based eye tracking. This protocol can also be integrated with other technologies, such as motion tracking and heart-rate monitoring, to provide a high-density multimodal dataset for examining natural behavior, learning, and development than previously possible. This paper illustrates the types of data generated from head-mounted eye tracking in a study designed to investigate visual attention in one natural context for toddlers: free-flowing toy play with a parent. Successful use of this protocol will allow researchers to collect data that can be used to answer questions not only about visual attention, but also about a broad range of other perceptual, cognitive, and social skills and their development.
  • Romberg, A., Zhang, Y., Newman, B., Triesch, J., & Yu, C. (2016). Global and local statistical regularities control visual attention to object sequences. In Proceedings of the 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 262-267).

    Abstract

    Many previous studies have shown that both infants and adults are skilled statistical learners. Because statistical learning is affected by attention, learners' ability to manage their attention can play a large role in what they learn. However, it is still unclear how learners allocate their attention in order to gain information in a visual environment containing multiple objects, especially how prior visual experience (i.e., familiarly of objects) influences where people look. To answer these questions, we collected eye movement data from adults exploring multiple novel objects while manipulating object familiarity with global (frequencies) and local (repetitions) regularities. We found that participants are sensitive to both global and local statistics embedded in their visual environment and they dynamically shift their attention to prioritize some objects over others as they gain knowledge of the objects and their distributions within the task.
  • Zhang, Y., & Yu, C. (2016). Examining referential uncertainty in naturalistic contexts from the child’s view: Evidence from an eye-tracking study with infants. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 2027-2032). Austin, TX: Cognitive Science Society.

    Abstract

    Young Infants are prolific word learners even though they are facing the challenge of referential uncertainty (Quine, 1960). Many laboratory studies have shown that infants are skilled at inferring correct referents of words from ambiguous contexts (Swingley, 2009). However, little is known regarding how they visually attend to and select the target object among many other objects in view when parents name it during everyday interactions. By investigating the looking pattern of 12-month-old infants using naturalistic first-person images with varying degrees of referential ambiguity, we found that infants’ attention is selective and they only select a small subset of objects to attend to at each learning instance despite the complexity of the data in the real world. This work allows us to better understand how perceptual properties of objects in infants’ view influence their visual attention, which is also related to how they select candidate objects to build word-object mappings.

Share this page