Yayun Zhang

Publications

Displaying 1 - 5 of 5
  • Ronderos, C. R., Zhang, Y., & Rubio-Fernandez, P. (2024). Weighted parameters in demonstrative use: The case of Spanish teens and adults. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 3279-3286).
  • Sander, J., Çetinçelik, M., Zhang, Y., Rowland, C. F., & Harmon, Z. (2024). Why does joint attention predict vocabulary acquisition? The answer depends on what coding scheme you use. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1607-1613).

    Abstract

    Despite decades of study, we still know less than we would like about the association between joint attention (JA) and language acquisition. This is partly because of disagreements on how to operationalise JA. In this study, we examine the impact of applying two different, influential JA operationalisation schemes to the same dataset of child-caregiver interactions, to determine which yields a better fit to children's later vocabulary size. Two coding schemes— one defining JA in terms of gaze overlap and one in terms of social aspects of shared attention—were applied to video-recordings of dyadic naturalistic toy-play interactions (N=45). We found that JA was predictive of later production vocabulary when operationalised as shared focus (study 1), but also that its operationalisation as shared social awareness increased its predictive power (study 2). Our results emphasise the critical role of methodological choices in understanding how and why JA is associated with vocabulary size.
  • Yang, J., Zhang, Y., & Yu, C. (2024). Learning semantic knowledge based on infant real-time. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 741-747).

    Abstract

    Early word learning involves mapping individual words to their meanings and building organized semantic representations among words. Previous corpus-based studies (e.g., using text from websites, newspapers, child-directed speech corpora) demonstrated that linguistic information such as word co-occurrence alone is sufficient to build semantically organized word knowledge. The present study explored two new research directions to advance understanding of how infants acquire semantically organized word knowledge. First, infants in the real world hear words surrounded by contextual information. Going beyond inferring semantic knowledge merely from language input, we examined the role of extra-linguistic contextual information in learning semantic knowledge. Second, previous research relies on large amounts of linguistic data to demonstrate in-principle learning, which is unrealistic compared with the input children receive. Here, we showed that incorporating extra-linguistic information provides an efficient mechanism through which semantic knowledge can be acquired with a small amount of data infants perceive in everyday learning contexts, such as toy play.

    Additional information

    link to eScholarship
  • Romberg, A., Zhang, Y., Newman, B., Triesch, J., & Yu, C. (2016). Global and local statistical regularities control visual attention to object sequences. In Proceedings of the 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 262-267).

    Abstract

    Many previous studies have shown that both infants and adults are skilled statistical learners. Because statistical learning is affected by attention, learners' ability to manage their attention can play a large role in what they learn. However, it is still unclear how learners allocate their attention in order to gain information in a visual environment containing multiple objects, especially how prior visual experience (i.e., familiarly of objects) influences where people look. To answer these questions, we collected eye movement data from adults exploring multiple novel objects while manipulating object familiarity with global (frequencies) and local (repetitions) regularities. We found that participants are sensitive to both global and local statistics embedded in their visual environment and they dynamically shift their attention to prioritize some objects over others as they gain knowledge of the objects and their distributions within the task.
  • Zhang, Y., & Yu, C. (2016). Examining referential uncertainty in naturalistic contexts from the child’s view: Evidence from an eye-tracking study with infants. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 2027-2032). Austin, TX: Cognitive Science Society.

    Abstract

    Young Infants are prolific word learners even though they are facing the challenge of referential uncertainty (Quine, 1960). Many laboratory studies have shown that infants are skilled at inferring correct referents of words from ambiguous contexts (Swingley, 2009). However, little is known regarding how they visually attend to and select the target object among many other objects in view when parents name it during everyday interactions. By investigating the looking pattern of 12-month-old infants using naturalistic first-person images with varying degrees of referential ambiguity, we found that infants’ attention is selective and they only select a small subset of objects to attend to at each learning instance despite the complexity of the data in the real world. This work allows us to better understand how perceptual properties of objects in infants’ view influence their visual attention, which is also related to how they select candidate objects to build word-object mappings.

Share this page