Yayun Zhang

Publications

Displaying 1 - 5 of 5
  • Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).

    Abstract

    In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents.
  • Tsutsui, S., Wang, X., Weng, G., Zhang, Y., Crandall, D., & Yu, C. (2022). Action recognition based on cross-situational action-object statistics. In Proceedings of the 2022 IEEE International Conference on Development and Learning (ICDL 2022).

    Abstract

    Machine learning models of visual action recognition are typically trained and tested on data from specific situations where actions are associated with certain objects. It is an open question how action-object associations in the training set influence a model's ability to generalize beyond trained situations. We set out to identify properties of training data that lead to action recognition models with greater generalization ability. To do this, we take inspiration from a cognitive mechanism called cross-situational learning, which states that human learners extract the meaning of concepts by observing instances of the same concept across different situations. We perform controlled experiments with various types of action-object associations, and identify key properties of action-object co-occurrence in training data that lead to better classifiers. Given that these properties are missing in the datasets that are typically used to train action classifiers in the computer vision literature, our work provides useful insights on how we should best construct datasets for efficiently training for better generalization.
  • Zhang, Y., & Yu, C. (2022). Examining real-time attention dynamics in parent-infant picture book reading. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 1367-1374). Toronto, Canada: Cognitive Science Society.

    Abstract

    Picture book reading is a common word-learning context from which parents repeatedly name objects to their child and it has been found to facilitate early word learning. To learn the correct word-object mappings in a book-reading context, infants need to be able to link what they see with what they hear. However, given multiple objects on every book page, it is not clear how infants direct their attention to objects named by parents. The aim of the current study is to examine how infants mechanistically discover the correct word-object mappings during book reading in real time. We used head-mounted eye-tracking during parent-infant picture book reading and measured the infant's moment-by-moment visual attention to the named referent. We also examined how gesture cues provided by both the child and the parent may influence infants' attention to the named target. We found that although parents provided many object labels during book reading, infants were not able to attend to the named objects easily. However, their abilities to follow and use gestures to direct the other social partner’s attention increase the chance of looking at the named target during parent naming.
  • Chen, C.-h., Zhang, Y., & Yu, C. (2018). Learning object names at different hierarchical levels using cross-situational statistics. Cognitive Science, 42(S2), 591-605. doi:10.1111/cogs.12516.

    Abstract

    Objects in the world usually have names at different hierarchical levels (e.g., beagle, dog, animal). This research investigates adults' ability to use cross-situational statistics to simultaneously learn object labels at individual and category levels. The results revealed that adults were able to use co-occurrence information to learn hierarchical labels in contexts where the labels for individual objects and labels for categories were presented in completely separated blocks, in interleaved blocks, or mixed in the same trial. Temporal presentation schedules significantly affected the learning of individual object labels, but not the learning of category labels. Learners' subsequent generalization of category labels indicated sensitivity to the structure of statistical input.
  • Slone, L. K., Abney, D. H., Borjon, J. I., Chen, C.-h., Franchak, J. M., Pearcy, D., Suarez-Rivera, C., Xu, T. L., Zhang, Y., Smith, L. B., & Yu, C. (2018). Gaze in action: Head-mounted eye tracking of children's dynamic visual attention during naturalistic behavior. Journal of Visualized Experiments, (141): e58496. doi:10.3791/58496.

    Abstract

    Young children's visual environments are dynamic, changing moment-by-moment as children physically and visually explore spaces and objects and interact with people around them. Head-mounted eye tracking offers a unique opportunity to capture children's dynamic egocentric views and how they allocate visual attention within those views. This protocol provides guiding principles and practical recommendations for researchers using head-mounted eye trackers in both laboratory and more naturalistic settings. Head-mounted eye tracking complements other experimental methods by enhancing opportunities for data collection in more ecologically valid contexts through increased portability and freedom of head and body movements compared to screen-based eye tracking. This protocol can also be integrated with other technologies, such as motion tracking and heart-rate monitoring, to provide a high-density multimodal dataset for examining natural behavior, learning, and development than previously possible. This paper illustrates the types of data generated from head-mounted eye tracking in a study designed to investigate visual attention in one natural context for toddlers: free-flowing toy play with a parent. Successful use of this protocol will allow researchers to collect data that can be used to answer questions not only about visual attention, but also about a broad range of other perceptual, cognitive, and social skills and their development.

Share this page